Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Autore principale: Doneddu, Alfred
Serie: Collana di aggiornamento e didassi ; 12
In matematica, la composizione di funzioni è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione f {\displaystyle f} tra due insiemi X {\displaystyle X} e Y {\displaystyle Y} trasforma ogni elemento di X {\displaystyle X} in uno di Y {\displaystyle Y} : in presenza di un'altra funzione g {\displaystyle g} che trasforma ogni elemento di Y {\displaystyle Y} in un elemento di un altro insieme Z {\displaystyle Z} , si definisce la composizione di f {\displaystyle f} e g {\displaystyle g} come la funzione che trasforma ogni elemento di X {\displaystyle X} in uno di Z {\displaystyle Z} usando prima f {\displaystyle f} e poi g {\displaystyle g} . Il simbolo Unicode dell'operatore è ∘ (U+2218).
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
Record aggiornato il: 2023-06-29T02:04:19.863Z