Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Autore principale: Messina, Leonardo; Paolini, Leonardo
Fa parte di: Costruzioni / Salvatore Di Pasquale...[et al.]
Fa parte di: Costruzioni / Salvatore Di Pasquale...[et al.]
Fa parte di: Costruzioni / Salvatore Di Pasquale...[et al.]
L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. Introducendo per il calcolo concetti problematici, quali quello di infinito e di limite, si può passare all'indagine che le ha permesso di divenire basilare in diverse discipline scientifiche e tecniche (dalle scienze naturali all'ingegneria, dall'informatica all'economia), dove viene spesso coniugata con l'analisi numerica.
Il calcolo vettoriale è un ramo dell'algebra lineare che si interessa dell'analisi reale di vettori a 2 o più dimensioni. Consiste in un insieme di formule e di tecniche risolutive molto utilizzate in ingegneria e in fisica.
Il calcolo combinatorio è il termine che denota tradizionalmente la branca della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Il calcolo combinatorio si interessa soprattutto di contare tali modi, ossia le configurazioni e solitamente risponde a domande quali "Quanti sono...", "In quanti modi...", "Quante possibili combinazioni..." e così via. Più formalmente, dato un insieme S di n oggetti si vogliono contare le configurazioni che possono assumere k oggetti tratti da questo insieme. Prima di affrontare un problema combinatorio bisogna precisare due punti importanti: Se l'ordinamento è importante, ovvero se due configurazioni sono le stesse a meno di un riordinamento ({x,y,z} è uguale a {z,x,y}?) Se si possono avere più ripetizioni di uno stesso oggetto, ovvero se uno stesso oggetto dell'insieme può o meno essere riusato più volte all'interno di una stessa configurazione.
Il calcolo infinitesimale è la branca fondante dell'analisi matematica che studia il "comportamento locale" di una funzione tramite le nozioni di continuità e limite, usato in quasi tutti i campi della matematica e della fisica, e della scienza in generale. Le funzioni a cui si applica sono a variabile reale o complessa. Tramite la nozione di limite, il calcolo infinitesimale definisce e studia le nozioni di convergenza di una successione o di una serie, continuità, derivata e integrale.
Record aggiornato il: 2025-10-11T03:17:57.309Z