Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In fisica la radiazione di Hawking, detta anche di Bekenstein-Hawking, è una radiazione termica che si ritiene sia emessa dai buchi neri a causa di effetti quantici. La dimostrazione teorica del fenomeno deriva dall'applicazione dei principi della meccanica quantistica, in particolare dell'energia di punto zero, nei pressi di una zona particolare che circonda il buco nero detta orizzonte degli eventi. A tutt'oggi non ne esistono evidenze sperimentali. Il nome si deve al fisico Stephen Hawking, che nel 1974 ne ha elaborato la teoria. Anche il fisico Jacob Bekenstein sostiene che i buchi neri abbiano proprietà termiche.
Un buco nero stellare (o buco nero di massa stellare) è un buco nero che si forma dal collasso gravitazionale di una stella massiccia (20 o più masse solari, sebbene non si conosca esattamente, a causa degli svariati parametri da cui dipende, la massa minima che dovrebbe avere la stella) alla fine della propria evoluzione. Il processo di formazione dell'oggetto è ultimato con l'esplosione di una supernova o un gamma ray burst. Il buco nero stellare più massiccio conosciuto sino ad ora (2019), indicato come LB-1 B (o LB-1 *), ha una massa pari a circa 70 ± 1,45 M☉.
In astrofisica un buco nero è un corpo celeste con un campo gravitazionale così intenso da non lasciare sfuggire né la materia, né la radiazione elettromagnetica, ovvero, da un punto di vista relativistico, una regione dello spaziotempo con una curvatura sufficientemente grande che nulla dal suo interno può uscirne, nemmeno la luce essendo la velocità di fuga superiore a c. Il buco nero è il risultato di implosioni di masse sufficientemente elevate. La gravità domina su qualsiasi altra forza, sicché si verifica un collasso gravitazionale che tende a concentrare lo spaziotempo in un punto al centro della regione, dove è teorizzato uno stato della materia di curvatura tendente ad infinito e volume tendente a zero chiamato singolarità, con caratteristiche sconosciute ed estranee alle leggi della relatività generale. Il limite del buco nero è definito orizzonte degli eventi, regione che ne delimita in modo peculiare i confini osservabili. Per le suddette proprietà, il buco nero non è osservabile direttamente. La sua presenza si rivela solo indirettamente mediante i suoi effetti sullo spazio circostante: le interazioni gravitazionali con altri corpi celesti e le loro emissioni (vedi lente gravitazionale), le irradiazioni principalmente elettromagnetiche della materia catturata dal suo campo di forza. Nel corso dei decenni successivi alla pubblicazione della Relatività Generale, base teorica della loro esistenza, vennero raccolte numerose osservazioni interpretabili, pur non sempre univocamente, come prove della presenza di buchi neri, specialmente in alcune galassie attive e sistemi stellari di binarie X. L'esistenza di tali oggetti è oggi definitivamente dimostrata e via via ne vengono individuati di nuovi con massa molto variabile, da valori di circa 5 fino a miliardi di masse solari.
L'astronomia è la scienza che si occupa dell'osservazione e della spiegazione degli eventi celesti. Studia le origini e l'evoluzione, le proprietà fisiche, chimiche e temporali degli oggetti che formano l'universo e che possono essere osservati sulla sfera celeste. È una delle scienze più antiche e molte civiltà arcaiche in tutto il mondo hanno studiato in modo più o meno sistematico il cielo e gli eventi astronomici: egizi e greci nell'area mediterranea, babilonesi, indiani e cinesi nell'Oriente, fino ai maya e agli incas nelle Americhe. Questi antichi studi astronomici erano orientati verso lo studio delle posizioni degli astri (astrometria), la periodicità degli eventi e la cosmologia e quindi, in particolare per questo ultimo aspetto, l'astronomia antica è quasi sempre fortemente collegata con aspetti religiosi. Oggi, invece, la ricerca astronomica moderna è praticamente sinonimo di astrofisica. L'astronomia non va confusa con l'astrologia, una pseudoscienza che sostiene che i moti apparenti del Sole e dei pianeti nello zodiaco influenzino in qualche modo gli eventi umani, personali e collettivi. Anche se le due discipline hanno un'origine comune, esse sono totalmente differenti: gli astronomi hanno abbracciato il metodo scientifico sin dai tempi di Galileo, a differenza degli astrologi. L'astronomia è una delle poche scienze in cui il lavoro di ricerca del dilettante e dell'amatore (l'astrofilo) può giocare un ruolo rilevante, fornendo dati sulle stelle variabili o scoprendo comete, nove, supernove, asteroidi o altri oggetti.