Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Per mutazione genetica si intende ogni modifica stabile ed ereditabile nella sequenza nucleotidica di un genoma o più generalmente di materiale genetico (sia DNA che RNA) dovuta ad agenti esterni o al caso, ma non alla ricombinazione genetica. Una mutazione modifica quindi il genotipo di un individuo e può eventualmente modificarne il fenotipo a seconda delle sue caratteristiche e delle interazioni con l'ambiente. Le mutazioni sono gli elementi di base grazie ai quali possono svolgersi i processi evolutivi. Le mutazioni determinano infatti la cosiddetta variabilità genetica, ovvero la condizione per cui gli organismi differiscono tra loro per uno o più caratteri. Su questa variabilità, tramite la ricombinazione genetica, opera la selezione naturale, la quale promuove le mutazioni favorevoli a scapito di quelle sfavorevoli o addirittura letali. Essendo una parte delle mutazioni non favorevoli, gli organismi hanno sviluppato diversi meccanismi per la riparazione del DNA dai vari danni che può subire, riducendo in questo modo il tasso di mutazione. Le mutazioni vengono distinte dai genetisti in base alla loro scala di azione: l'alterazione può riguardare un singolo gene, porzioni del genoma o l'intero corredo cromosomico. Se le mutazioni avvengono in una cellula somatica queste, assieme ai relativi effetti, saranno presenti in tutte le cellule da essa derivate per mitosi; alcune di queste mutazioni possono rendere le cellule maligne e provocare il cancro,e sono responsabili di alcune malformazioni congenite. Se le mutazioni sono presenti nelle cellule delle linee germinali o nei gameti sono ereditate dalle generazioni successive e possono eventualmente provocare malattie genetiche ereditarie.
L'equilibrio di Hardy-Weinberg, o legge di Hardy-Weinberg, è un modello della genetica delle popolazioni che postula che all'interno di una popolazione (panmictica ideale) vi è equilibrio delle frequenze alleliche e genotipiche da una generazione all'altra, ovvero queste non cambiano con il passare del tempo a meno che non intervengano fattori specifici atti a disturbare l'equilibrio stesso. La legge di Hardy-Weinberg risponde alla domanda: "Come mai, se una mutazione è dominante, non siamo tutti soggetti a suddetta mutazione?". Punnet pose questa domanda ad Hardy, uno dei più noti matematici inglesi, che dopo poco tempo trovò la soluzione. Semplificò il problema indicando che non ci fossero influenze esterne e concluse che la libertà che si manifestava nella mutazione aveva essenzialmente due conseguenze: Le frequenze degli alleli in una popolazione presa ad esame rimanevano costanti. Le relative frequenze dei diversi genotipi sarebbero rimaste le stesse dopo la prima generazione.Hardy e il medico tedesco Weinberg formularono indipendentemente questa formula matematica p 2 + 2 p q + q 2 = 1 {\displaystyle p^{2}+2pq+q^{2}=1} O equivalentemente: ( p + q ) 2 = 1 {\displaystyle (p+q)^{2}=1} Questo è valido nel caso semplice del locus singolo con due alleli "A" e "a", con due frequenze del tipo f(A)=p e f(a)=q. I genomi che ci aspettiamo sono dunque: f(AA)=p^2, probabilità che un uovo contenente l'allele "A" si incontri con uno spermatozoo contenente "A". f(Aa)=2pq, somma della probabilitá che un uovo con l'allele "A" si incontri con un gamete maschile contenente "a" e della probabilità che un gamete femminile con "a" incontri uno spermatozoo avente "A". f(aa)=q^2, probabilità che un gamete maschile e uno femminile, entrambi con l'allele "a", si incontrino.La legge di H-W descrive la situazione più semplice di equilibrio genetico di una popolazione: nonostante le condizioni dell'equilibrio di Hardy-Weinberg sembrino difficili da ottenere, esse valgono per molti caratteri in parecchie situazioni. Le condizioni per cui un locus in una popolazione segue la legge di H-W sono le seguenti. HW1 Popolazione praticamente infinita. Ciò è richiesto affinché si possa applicare la legge dei grandi numeri, e quindi le frequenze siano praticamente coincidenti con le probabilità. Sorprendentemente, basta una popolazione di poche centinaia di individui, pur essendo possibili (ma improbabili) fluttuazioni. HW2 Assenza di immigrazione ed emigrazione. In questo modo il pool genetico è influenzato solo dalle sue dinamiche interne. HW3 Panmissia (incrocio casuale). Significa che la probabilità che due individui si incrocino non è influenzata dal fenotipo del carattere in questione. In questo modo è come se i geni di tutti gli individui fossero mescolati nel pool genetico ed estratti a sorte per creare i genotipi dei nuovi individui. La panmissia manca, ad esempio, nel caso di forti preferenze matrimoniali all'interno di caste chiuse, specie se con diversa origine etnica. HW4 Non selezione. Il successo riproduttivo medio degli individui (detto anche fitness) non deve essere influenzato dal genotipo per il carattere in questione. I due (o più) alleli devono quindi avere la stessa probabilità, una volta presenti, di essere trasmessi alle successive generazioni. HW5 Non mutazione. Ovviamente le mutazioni alterano la composizione del pool genetico delle nuove generazioni. Sono comunque eventi rari.La legge di Hardy-Weinberg stabilisce che nelle condizioni suindicate le frequenze geniche rimangono costanti e le frequenze genotipiche si stabilizzano in una generazione in modo che la frequenza degli omozigoti sia il quadrato di quella dell'allele, mentre quelle degli eterozigoti saranno il doppio prodotto delle frequenze degli alleli posseduti.
In genetica delle popolazioni, per deriva genetica si intende la componente dell'evoluzione di una specie dovuta a fattori casuali, e che può essere quindi studiata con metodi statistici. Questo effetto può far divenire un allele e il fenotipo da esso rappresentato più comune o più raro col passare di generazioni successive. In definitiva la deriva può sia rimuovere l'allele dal pool genetico, sia rimuovere tutte le altre varianti. Dato che la selezione naturale è la tendenza di alleli con effetti positivi a divenire più comuni nel tempo (e di quelli con effetti negativi a divenire meno comuni), la deriva genetica è la tendenza fondamentale di ogni allele di variare casualmente in frequenza nel tempo per una variazione statistica sola, così che lungo questo processo non siano comprese tutte le distribuzioni, ma neanche nessuna. La probabilità influisce sulla comunità o rarità di un allele, perché nessun carattere garantisce la sopravvivenza né un numero dato di figli. Questo perché la sopravvivenza può dipendere da fattori non strettamente genetici (come la possibilità di "essere nel posto sbagliato nel momento sbagliato"). In altre parole, anche quando gli individui devono affrontare le stesse situazioni, avranno differenti risultati nel superarli. Può accadere dunque che una successione rara di fattori probabilistici - più che la semplice selezione naturale - possa portare un carattere a predominare, causando l'evoluzione di una popolazione o di una specie. Un importante aspetto della deriva genetica è che la sua velocità si pensa dipenda fortemente dalla grandezza della popolazione. Questa è una conseguenza della legge dei grandi numeri. Quando più individui portano un particolare allele, e tutti affrontano uguali situazioni, il numero di figli che generano collettivamente di rado differirà dal valore previsto, che è, in media, il numero di individui per i tempi di vita dell'individuo. Ma con un piccolo numero di individui, una rottura fortuita per uno o due causa una deviazione sproporzionalmente più grande dal risultato previsto. Perciò piccole popolazioni derivano più rapidamente di quelle più grandi. Questa è la base per l'effetto del fondatore, un meccanismo proposto riguardo alla speciazione. Per definizione, la deriva genetica non ha direzioni preferite. Un allele neutro (con effetto né positivo né negativo) si può stimare che aumenti o diminuisca in ogni generazione data con uguale probabilità. Dato un tempo sufficientemente lungo, comunque, la matematica della deriva genetica stima che l'allele scomparirà o sarà presente nel 100% della popolazione, dopo il quale tempo non vi è variazione casuale nel gene associato. Perciò la deriva genetica tende ad eliminare varianti di un gene da una popolazione lungo il tempo, al punto che tutti i membri di una specie dovrebbero infine essere omozigoti per quel gene. Riguardo a questo, la deriva genetica è un processo opposto alla mutazione genetica, che al contrario introduce nuove varianti nella popolazione secondo i suoi propri processi casuali.