Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In geofisica, i terremoti (dal latino: terrae motus, che vuol dire "movimento della terra"), detti anche sismi o scosse telluriche (dal latino Tellus, dea romana della Terra), sono vibrazioni o assestamenti della crosta terrestre, provocati dallo spostamento improvviso di una massa rocciosa nel sottosuolo. Tale spostamento è generato dalle forze di natura tettonica che agiscono costantemente all'interno della crosta terrestre provocando una lenta deformazione fino al raggiungimento del carico di rottura con conseguente liberazione di energia elastica in una zona interna della Terra detta ipocentro, tipicamente localizzato al di sotto di fratture preesistenti della crosta dette faglie; a partire dalla frattura creatasi una serie di onde elastiche, dette onde sismiche, si propagano in tutte le direzioni dall'ipocentro, dando vita al fenomeno osservato in superficie con il luogo della superficie terrestre posto sulla verticale dell'ipocentro, detto epicentro, che è generalmente quello più interessato dal fenomeno. La branca della geofisica che studia questi fenomeni è la sismologia. Quasi tutti i terremoti che avvengono sulla superficie terrestre sono concentrati in zone ben precise, ossia in prossimità dei confini tra due placche tettoniche dove il contatto è costituito da faglie: queste sono infatti le aree tettonicamente attive, ossia dove le placche si muovono più o meno "sfregando" o "cozzando" le une rispetto alle altre, generando così i terremoti d'interplacca. Più raramente i terremoti avvengono lontano dalle zone di confine tra placche, per riassestamenti tettonici. Terremoti localizzati e di minor intensità sono registrabili in aree vulcaniche per effetto del movimento di masse magmatiche in profondità. Secondo il modello della tettonica delle placche il movimento delle placche è lento, costante e impercettibile (se non con strumenti appositi), e modella e distorce le rocce sia in superficie sia nel sottosuolo. Tuttavia in alcuni momenti e in alcune aree, a causa delle forze interne (pressioni, tensioni e attriti) tra le masse rocciose, tali modellamenti si arrestano e la superficie coinvolta accumula tensione ed energia per decine o centinaia di anni fino a che, al raggiungimento del carico di rottura, l'energia accumulata è sufficiente a superare le forze resistenti causando l'improvviso e repentino spostamento della massa rocciosa coinvolta. Tale movimento improvviso, che in pochi secondi rilascia energia accumulata per decine o centinaia di anni, genera così le onde sismiche e il terremoto associato.L'energia liberata da un terremoto ha origine in un punto detto epicentro,da qui partono le vibrazioni dette onde sismiche
In fisica la teoria del tutto, conosciuta anche come TOE (acronimo dell'inglese Theory Of Everything), è una ipotetica teoria fisica in grado di spiegare e riunire in un unico quadro tutti i fenomeni fisici conosciuti. Inizialmente il termine fu usato con connotazione ironica per riferirsi alle varie teorie supergeneralizzate, anche in ambito fantascientifico. Per quanto riguarda la letteratura tecnica, il fisico John Ellis afferma di averlo introdotto in un articolo della rivista Nature nel 1986. Nel tempo il termine si affermò nelle popolarizzazioni della fisica quantistica per descrivere una teoria che avrebbe unificato tutte le Interazioni fondamentali della natura, nota anche come teoria del campo unificato. Ci sono state molte teorie del tutto proposte dai fisici teorici nell'ultimo secolo, ma nessuna è stata confermata sperimentalmente. Il problema principale nel produrre una tale teoria è quello di rendere compatibili le due teorie fisiche fondamentali accettate, la meccanica quantistica e la relatività generale, attualmente inconciliabili.
Nella storia della fisica con il nome di fisica classica si raggruppano tutti gli ambiti e i modelli della fisica che non considerano i fenomeni descritti nel macrocosmo dalla relatività generale e nel microcosmo dalla meccanica quantistica, teorie che definiscono invece la cosiddetta fisica moderna. Per tale motivo è possibile classificare come fisica classica tutte le teorie formulate prima del XX secolo, all'iniziare del quale apparvero i primi lavori di Max Planck basati sull'ipotesi dei quanti. Alcune teorie successive, come la relatività ristretta, possono essere considerate classiche o moderne. Sono quindi comprese nella fisica classica le teorie sulla meccanica, inclusa l'acustica, sulla termodinamica, sull'elettromagnetismo, inclusa l'ottica, e la gravità newtoniana. Nel XVII secolo fu sviluppato il metodo scientifico e si aprì una fase di indagine approfondita della natura condotta da celebri scienziati come Galileo Galilei, Isaac Newton e Gottfried Wilhelm von Leibniz. Gli studi si concentrarono sul moto dei corpi e le sue cause, con particolare riguardo verso la meccanica celeste, segnata dal confronto fra la teoria geocentrica e quella eliocentrica. L'attenzione della fisica nei due secoli successivi si estese all'elettrostatica e al magnetismo, alla termodinamica e infine all'elettrodinamica. L'elettrodinamica classica rappresentò la prima unificazione di teorie che descrivono fenomeni differenti, come l'elettricità, il magnetismo e la luce, in un'unica sintesi matematica formulata da James Clerk Maxwell. Fu tuttavia proprio grazie allo studio delle equazioni di Maxwell che la fisica classica entrò in crisi. Alcuni fenomeni fisici che occorrono a scala microscopica e macroscopica come lo studio della forma dello spettro di corpo nero, il fallimento della teoria dell'etere luminifero e la scoperta di fenomeni come l'effetto fotoelettrico, il moto browniano, il modello dell'atomo di idrogeno, la diffrazione di Bragg, la non invarianza in forma delle equazioni di Maxwell rispetto alle trasformazioni di Galileo, la precessione del perielio dell'orbita di Mercurio ecc., generarono una serie di contraddizioni che in breve tempo misero in crisi il complesso apparato della fisica classica, aprendo la strada alla relatività speciale e alla meccanica quantistica e a tutta la fisica moderna del XX secolo. Il progressivo sviluppo della matematica fu stimolato dalla fisica e rese possibile la nascita di nuove teorie che necessitavano di nuovi strumenti, come il calcolo differenziale, per poter essere formalizzate. Infatti la storia della matematica è intrecciata con quella della fisica classica, ed è proprio con lo sviluppo di quest'ultima che la scienza iniziò a servirsi di formule matematiche per rappresentare e sintetizzare le teorie sul comportamento della natura.
La fisica (termine che deriva dal latino physica, "natura" a sua volta derivante dal greco (τὰ) φυσικά ((tà) physiká), "(le) cose naturali", nato da φύσις (phýsis), entrambi derivati dall'origine comune indoeuropea) è la scienza della natura nel senso più ampio. Nata con lo scopo di studiare i fenomeni naturali, ossia tutti gli eventi che possono essere descritti, ovvero quantificati o misurati, attraverso grandezze fisiche opportune, al fine di stabilire principi e leggi che regolano le interazioni tra le grandezze stesse e le loro variazioni, mediante astrazioni matematiche, quest'obiettivo è raggiunto attraverso l'applicazione rigorosa del metodo scientifico, il cui scopo ultimo è fornire uno schema semplificato, o modello, del fenomeno descritto: l'insieme di principi e leggi fisiche relative a una certa classe di fenomeni osservati definiscono una teoria fisica deduttiva, coerente e relativamente autoconsistente, costruita tipicamente a partire dall'induzione sperimentale.