Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Un numero complesso è definito come un numero della forma x + y i {\displaystyle x+yi} con x {\displaystyle x} e y {\displaystyle y} numeri reali e i {\displaystyle i} una soluzione dell'equazione x 2 = − 1 {\displaystyle x^{2}=-1} ed è detta unità immaginaria. I numeri complessi sono usati in tutti i campi della matematica, in molti campi della fisica (notoriamente in meccanica quantistica), nonché in ingegneria, specialmente in elettronica/telecomunicazioni o elettrotecnica, per la loro utilità nel rappresentare onde elettromagnetiche e correnti elettriche ad andamento temporale sinusoidale. In matematica i numeri complessi formano un campo (nonché un'algebra reale bidimensionale) e sono generalmente visualizzati come punti di un piano, detto piano complesso. La proprietà più importante dei numeri complessi è basata sul teorema fondamentale dell'algebra, secondo il quale qualunque equazione polinomiale di grado n {\displaystyle n} ha n {\displaystyle n} soluzioni complesse, non necessariamente distinte.
L'algebra di Boole (anche detta algebra booleana o reticolo booleano), in matematica e logica matematica, è il ramo dell'algebra in cui le variabili possono assumere solamente i valori vero e falso (valori di verità), generalmente denotati rispettivamente come 1 e 0.