Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La storia della matematica ha origine con il concetto di numero e con le prime scoperte matematiche, proseguendo attraverso l'evoluzione nel corso dei secoli dei propri metodi e delle notazioni matematiche il cui uso si sussegue nel tempo. Un aspetto importante della matematica consiste nel fatto che essa si è sviluppata indipendentemente in culture completamente differenti arrivando in molti casi agli stessi risultati: spesso un contatto o una reciproca influenza tra popoli differenti ha portato all'introduzione di nuove idee e a un avanzamento delle conoscenze matematiche, a volte si è visto invece un regredire improvviso della cultura matematica presso alcuni popoli; la matematica moderna ha invece potuto avvalersi dei contributi di persone di tutti i paesi. L'attività svolta dai matematici moderni è molto diversa da quella dei primi matematici delle civiltà antiche; inizialmente la matematica si basò sul concetto di numero, concetto sviluppatosi nella preistoria. La matematica è stata infatti una tra le prime discipline a svilupparsi: evidenze archeologiche mostrano la conoscenza rudimentale di alcune nozioni matematiche molto prima dell'invenzione della scrittura.
La filosofia della matematica è la branca della filosofia della scienza che cerca di dare risposta a domande quali: "perché la matematica è utile nella descrizione della natura?", "in quale senso, qualora se ne trovi uno, le entità matematiche (in particolare i numeri) esistono?" "perché e in che modo gli enunciati matematici sono veri?". In questo articolo sono presentati i vari approcci che vengono seguiti per rispondere a questioni come le precedenti. È utile precisare che tre sono i problemi della filosofia della matematica: Un problema ontologico: risponde alla domanda "Esistono i numeri?"; Un problema metafisico: risponde alla domanda "Che cosa sono i numeri?"; Un problema epistemologico: "Come facciamo ad accedere epistemicamente alle verità della matematica o, meglio, come possiamo sapere che ciò che ci dice la matematica è vero?";Questi sono i problemi che la maggior parte dei filosofi, oggigiorno, ritengano debbano essere risolti da una buona filosofia della matematica.
Piergiorgio Odifreddi (Cuneo, 13 luglio 1950) è un matematico, logico, saggista e accademico italiano. Oltre che di matematica, nelle sue pubblicazioni si occupa di divulgazione scientifica, storia della scienza, filosofia, politica, religione, esegesi, filologia e saggistica varia.
Il termine metodo (dal greco μέϑοδος, composto di μετα- (in direzione di, in cerca di) e ὁδός (via, cammino) indica, in senso generale, un comportamento diretto al fine di istituire un ordine razionale in una ricerca e, in termini specifici, le regole e i principi nella procedura da adottare per l'acquisizione di una conoscenza indirizzata al conseguimento di un'azione efficace.
La matematica (dal greco μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere") è la disciplina che studia le quantità (i numeri), lo spazio, le strutture e i calcoli.Per l'origine del termine occorre andare al vocabolo egizio maat, nella cui composizione appare il simbolo del cubito, strumento di misura lineare, un primo accostamento al concetto matematico. Simbolo geometrico di questo ordine è un rettangolo, da cui sorge la testa piumata della dea egizia Maat, personificazione dei concetti di ordine, verità e giustizia. Figlia di Ra, unico Uno, creatore di ogni cosa, la sua potenza demiurgica è limitata e ordinata da leggi naturali e matematiche. All'inizio del papiro di Rhind si trova questa affermazione: "Il calcolo accurato è la porta d'accesso alla conoscenza di tutte le cose e agli oscuri misteri". Il termine maat riappare in copto, in babilonese e in greco. In greco la radice ma, math, met entra nella composizione di vocaboli contenenti le idee di ragione, disciplina, scienza, istruzione, giusta misura, e in latino il termine materia indica ciò che può essere misurato. Col termine matematica di solito si designa la disciplina (e il relativo corpo di conoscenze) che studia problemi concernenti quantità, estensioni e figure spaziali, movimenti di corpi, e tutte le strutture che permettono di trattare questi aspetti in modo generale. La matematica fa largo uso degli strumenti della logica e sviluppa le proprie conoscenze nel quadro di sistemi ipotetico-deduttivi che, a partire da definizioni rigorose e da assiomi riguardanti proprietà degli oggetti definiti (risultati da un procedimento di astrazione, come triangoli, funzioni, vettori ecc.), raggiunge nuove certezze, per mezzo delle dimostrazioni, attorno a proprietà meno intuitive degli oggetti stessi (espresse dai teoremi). La potenza e la generalità dei risultati della matematica le ha reso l'appellativo di regina delle scienze: ogni disciplina scientifica o tecnica, dalla fisica all'ingegneria, dall'economia all'informatica, fa largo uso degli strumenti di analisi, di calcolo e di modellazione offerti dalla matematica.
In informatica una macchina di Turing (o più brevemente MdT) è una macchina ideale che manipola i dati contenuti su un nastro di lunghezza potenzialmente infinita, secondo un insieme prefissato di regole ben definite. In altre parole si tratta di un modello astratto che definisce una macchina in grado di eseguire algoritmi e dotata di un nastro potenzialmente infinito su cui può leggere e/o scrivere dei simboli. Introdotta nel 1936 da Alan Turing come modello di calcolo per dare risposta all'Entscheidungsproblem (problema di decisione) proposto da Hilbert nel suo programma di fondazione formalista della matematica, è un potente strumento teorico che viene largamente usato nella teoria della calcolabilità e nello studio della complessità degli algoritmi, in quanto è di notevole aiuto agli studiosi nel comprendere i limiti del calcolo meccanico; la sua importanza è tale che oggi, per definire in modo formalmente preciso la nozione di algoritmo, si tende a ricondurlo alle elaborazioni effettuabili con macchine di Turing.
La filosofia (in greco antico: φιλοσοφία, philosophía, composto di φιλεῖν (phileîn), "amare", e σοφία (sophía), "sapienza", ossia "amore per la sapienza") è un campo di studi che si pone domande e riflette sul mondo e sull'essere umano, indaga sul senso dell'essere e dell'esistenza umana. Come intrinseco nel nome stesso la filosofia è l'amore per la sapienza (intesa come conoscenza) e la ricerca.Prima ancora che indagine speculativa, la filosofia fu una disciplina che assunse anche i caratteri della conduzione del "modo di vita", ad esempio nell'applicazione concreta dei principi desunti attraverso la riflessione o pensiero. In questa forma, essa sorse nell'antica Grecia. A rendere complessa una definizione univoca della filosofia concorre il dissenso tra i filosofi sull'oggetto stesso della filosofia: alcuni orientano l'analisi della filosofia verso l'uomo e i suoi interessi così come viene esposto nell'Eutidemo di Platone, per cui essa sarebbe «l'uso del sapere a vantaggio dell'uomo».Nel prosieguo della storia della filosofia altri autori che seguono questa opinione sono per esempio Cartesio («Tutta la filosofia è come un albero, di cui le radici sono la metafisica, il tronco è la fisica, e i rami che sorgono da questo tronco sono le altre scienze, che si riducono a tre principali: la medicina, la meccanica e la morale, intendo la più alta e la più perfetta morale, che presupponendo una conoscenza completa delle altre scienze, è l'ultimo grado della saggezza»), Thomas Hobbes, e Immanuel Kant, il quale, definisce la filosofia come «scienza della relazione di ogni conoscenza al fine essenziale della ragione umana».Altri pensatori ritengono che la filosofia debba puntare alla conoscenza dell'essere in quanto tale secondo un percorso che, fatte le debite differenze, va dagli eleati sino a Husserl e Heidegger.
Con l'espressione crisi dei fondamenti della matematica ci si riferisce al fallimento del tentativo di dare una rigorosa giustificazione formale all'insieme di definizioni e deduzioni su cui si basa l'aritmetica (e conseguentemente anche la matematica nella sua interezza), il quale fu seguito all'inizio del Novecento da una radicale revisione dei concetti fondamentali della disciplina.In seguito al grande impulso ricevuto dalla formalizzazione nel corso dell'Ottocento grazie al lavoro di matematici come George Boole, Giuseppe Peano e Richard Dedekind, tra la fine del XIX e l'inizio del XX secolo un nutrito gruppo di studiosi si impegnò nel tentativo di dare una rigorosa fondazione logica ai contenuti delle proposizioni matematiche, con l'obiettivo di produrre una giustificazione assoluta della loro validità (in ciò fu importante specialmente il lavoro di Gottlob Frege); tuttavia l'insorgenza di difficoltà inaspettate (in particolare una serie di paradossi portati alle loro estreme conseguenze da Kurt Gödel nel 1931), finì per dimostrare l'incompletezza di tutta la matematica. È in generale riconosciuto il ruolo che la crisi dei fondamenti della matematica rivestì nella più ampia crisi che all'inizio del Novecento investì anche la fisica, la psicologia e la filosofia, provocando una perdita di certezze nel campo dell'epistemologia e della filosofia della scienza che portò in ultima analisi al crollo delle teorie filosofiche positiviste.