Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Il calcolo infinitesimale è la branca fondante dell'analisi matematica che studia il "comportamento locale" di una funzione tramite le nozioni di continuità e limite, usato in quasi tutti i campi della matematica e della fisica, e della scienza in generale. Le funzioni a cui si applica sono a variabile reale o complessa. Tramite la nozione di limite, il calcolo infinitesimale definisce e studia le nozioni di convergenza di una successione o di una serie, continuità, derivata e integrale.
Il calcolo combinatorio è il termine che denota tradizionalmente la branca della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Il calcolo combinatorio si interessa soprattutto di contare tali modi, ossia le configurazioni e solitamente risponde a domande quali "Quanti sono...", "In quanti modi...", "Quante possibili combinazioni..." e così via. Più formalmente, dato un insieme S di n oggetti si vogliono contare le configurazioni che possono assumere k oggetti tratti da questo insieme. Prima di affrontare un problema combinatorio bisogna precisare due punti importanti: Se l'ordinamento è importante, ovvero se due configurazioni sono le stesse a meno di un riordinamento ({x,y,z} è uguale a {z,x,y}?) Se si possono avere più ripetizioni di uno stesso oggetto, ovvero se uno stesso oggetto dell'insieme può o meno essere riusato più volte all'interno di una stessa configurazione.
Il calcolo è una facoltà o processo mentale cognitivo su base volontaria che trasforma uno o più dati in ingresso in uno o più risultati. Si tratta dunque di una forma di elaborazione dati.