Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La proteina del siero del latte (o WP, dall'inglese whey protein) è una miscela di proteine isolate dal siero di latte, la materia liquida che costituisce un sottoprodotto della produzione del formaggio. Le proteine del siero del latte sono comunemente assunte come integratore alimentare: l'interesse commerciale deriva da alcune indicazioni su benefici salutistici che, nell'ambito della medicina alternativa, vengono associati al consumo di tali proteine. .
In biologia, le proteine (o protidi) sono macromolecole biologiche costituite da catene di amminoacidi legati uno all'altro da un legame peptidico (ovvero un legame tra il gruppo amminico di un amminoacido e il gruppo carbossilico dell'altro amminoacido, creato attraverso una reazione di condensazione con perdita di una molecola d'acqua). Le proteine svolgono una vasta gamma di funzioni all'interno degli organismi viventi, tra cui la catalisi delle reazioni metaboliche, funzione di sintesi come replicazione del DNA, la risposta agli stimoli e il trasporto di molecole da un luogo ad un altro. Le proteine differiscono l'una dall'altra soprattutto nella loro sequenza di amminoacidi, la quale è dettata dalla sequenza nucleotidica conservata nei geni e che di solito si traduce in un ripiegamento proteico e in una struttura tridimensionale specifica che determina la sua attività. In analogia con altre macromolecole biologiche come i polisaccaridi e gli acidi nucleici, le proteine costituiscono una parte essenziale degli organismi viventi e partecipano praticamente in ogni processo che avviene all'interno delle cellule. Molte fanno parte della categoria degli enzimi, la cui funzione è catalizzare le reazioni biochimiche vitali per il metabolismo degli organismi. Le proteine hanno anche funzioni strutturali o meccaniche, come l'actina e la miosina nei muscoli e le proteine che costituiscono il citoscheletro, che formano una struttura che permette di mantenere la forma della cellula. Altre sono fondamentali per la trasmissione di segnali inter ed intracellulari, nella risposta immunitaria, per l'adesione cellulare e per il ciclo cellulare. Le proteine sono elementi necessari anche nell'alimentazione degli animali, dal momento che essi non possono sintetizzare tutti gli amminoacidi di cui hanno bisogno e devono ottenere quelli essenziali attraverso il cibo. Grazie al processo della digestione, gli animali scindono le proteine ingerite nei singoli amminoacidi, che poi vengono utilizzati nel metabolismo. Una volta sintetizzate nell'organismo, le proteine esistono solo per un certo periodo di tempo per poi venire degradate e riciclate attraverso i meccanismi cellulari per il processo di turnover proteico. La durata di una proteina è misurata in termini di emivita e può essere molto varia. Alcune possono esistere per solo alcuni minuti, altre fino ad alcuni anni, tuttavia la durata media nelle cellule di un mammifero è tra 1 e 2 giorni. Proteine anomale e mal ripiegate possono causare instabilità se non vengono degradate più rapidamente. Le proteine possono essere purificate da altri componenti cellulari utilizzando una varietà di tecniche come l'ultracentrifugazione, la precipitazione, l'elettroforesi e la cromatografia; l'avvento dell'ingegneria genetica ha reso possibile una serie di metodi per facilitare tale purificazione. I metodi comunemente usati per studiare la struttura e la funzione delle proteine includono immunoistochimica, la mutagenesi sito specifica, la cristallografia a raggi X, la risonanza magnetica nucleare. Le proteine si differenziano principalmente per la sequenza degli amminoacidi che le compongono, la quale a sua volta dipende dalla sequenza nucleotidica dei geni che all'interno della cellula ne esprimono la sintesi. Una catena lineare di residui amminoacidici è chiamata "polipeptide" (ovvero una catena di più amminoacidi legati da legami peptidici). Una proteina è generalmente costituita da uno o più polipeptidi lunghi eventualmente coordinati a gruppi non peptidici, chiamati gruppi prostetici o cofattori. Polipeptidi brevi, contenenti meno di circa 20-30 amminoacidi, vengono raramente considerati proteine e sono comunemente chiamati peptidi o talvolta oligopeptidi. La sequenza degli aminoacidi in una proteina è definita dalla sequenza presente in un gene, la quale è codificata nel codice genetico. In generale, il codice genetico specifica 20 amminoacidi standard; tuttavia, in alcuni organismi il codice può includere la selenocisteina (SEC), e in alcuni archaea, la pirrolisina ed infine un 23° amminoacido, la N-formilmetionina, un derivato della metionina, che inizia la sintesi proteica di alcuni batteri. Poco dopo o anche durante la sintesi proteica, i residui di una proteina vengono spesso modificati chimicamente mediante la modificazione post traduzionale, che se presente altera le proprietà fisiche e chimiche, la piegatura, la stabilità, l'attività e, in ultima analisi, la funzione della proteina. Le proteine possono anche operare insieme per raggiungere una particolare funzione e spesso associarsi in complessi multiproteici stabili. Proteine che contengono lo stesso tipo e numero di amminoacidi possono differire dall'ordine in cui questi sono situati nella struttura della molecola. Tale aspetto è molto importante perché una minima variazione nella sequenza degli amminoacidi di una proteina (cioè nell'ordine con cui i vari tipi di amminoacidi si susseguono) può portare a variazioni nella struttura tridimensionale della macromolecola che possono rendere la proteina non funzionale. Un esempio ben noto è il caso della catena beta dell'emoglobina umana, che nella sua normale sequenza porta un tratto formato da: valina-istidina-leucina-treonina-prolina-acido glutammico-lisina.
Le proteine G sono un sottogruppo di una superfamiglia di GTPasi. Nei mammiferi si possono distinguere due ampie classi di GTPasi: le GTPasi monomeriche e le proteine G eterotrimeriche, costituite cioè da tre subunità proteiche. Le subunità α, β e γ sono divise generalmente in subunità α e complesso βγ, agendo quest'ultimo come un'unità. Queste proteine sono direttamente associate a recettori di membrana, conosciuti come recettori a serpentina o recettori collegati a proteine G.Nello stato inattivo la subunità α lega GDP ed è strettamente legata al complesso βγ. Il legame di una molecola segnale con il recettore ne provoca un'alterazione conformazionale, che si riflette direttamente sulla subunità α che a sua volta cambia conformazione. Il cambiamento conformazionale determina una dissociazione della subunità α dal complesso βγ, per sostituire poi il GDP legato con un GTP assumendo così lo stato attivo. Entrambe le unità ora dissociate possono interagire con proteine bersaglio, che sono generalmente canali ionici oppure degli enzimi, quali adenilciclasi, fosfolipasi, fosfodiesterasi. Schematicamente le proteine G possono: agire da tramite tra recettori a sette segmenti transmembrana ed effettori enzimatici intracellulari (azioni a livello della membrana plasmatica o delle membrane interne) agire da tramite diretto (senza secondi messaggeri) tra recettori e canali ionici agire da tramite tra recettori ad attività enzimatica e i loro effettoriEsistono quattro classi di proteine G: Gs: attivano l'adenilato ciclasi, quindi la sintesi dell'AMP ciclico (cAMP); Gi: inibiscono l'adenilato ciclasi; Gq: attivano le fosfolipasi; Gt: attiva la cGMP Fosfodiesterasi.La loro azione può essere modulata da proteine intracellulari, quali RGS e AGS. Una proteina G è la gustducina, che assolve alle funzioni del gusto. Nel gusto la gustducina è presente nella percezione dell'amaro e del dolce. La proteina G eterotrimerica gioca un ruolo fondamentale nella percezione dell'odore. Le sostanze odorose, che sono molto piccole costituite da 3 a 20 atomi di carbonio, si accoppiano a proteine G. Quando una sostanza odorosa si lega al suo recettore le subunità (α, β e γ) della proteina G si dissociano. La subunità α attiva l'adenilato-ciclasi, catalizzando così la produzione di AMPc che agendo come secondo messaggero apre i canali cationici con ingresso di Ca 2+. Questo produce un potenziale che porta all'attivazione del nervo olfattivo.Nel 1994 sono stati premiati con il premio Nobel per la medicina Alfred G. Gilman e Martin Rodbell per la scoperta di questa proteina mentre nel 2012 gli statunitensi Robert Lefkowitz e Brian Kobilka, hanno vinto il premio Nobel per la chimica per i loro studi sempre sulla proteina G.