Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
L'ultimo teorema di Fermat, più correttamente definibile come ultima congettura di Fermat, non essendo dimostrata all'epoca, afferma che non esistono soluzioni intere positive all'equazione: a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} se n > 2 {\displaystyle n>2} .
Un triangolo iperbolico è un triangolo in geometria iperbolica.
La storia della matematica ha origine con il concetto di numero e con le prime scoperte matematiche, proseguendo attraverso l'evoluzione nel corso dei secoli dei propri metodi e delle notazioni matematiche il cui uso si sussegue nel tempo. Un aspetto importante della matematica consiste nel fatto che essa si è sviluppata indipendentemente in culture completamente differenti arrivando in molti casi agli stessi risultati: spesso un contatto o una reciproca influenza tra popoli differenti ha portato all'introduzione di nuove idee e a un avanzamento delle conoscenze matematiche, a volte si è visto invece un regredire improvviso della cultura matematica presso alcuni popoli; la matematica moderna ha invece potuto avvalersi dei contributi di persone di tutti i paesi. L'attività svolta dai matematici moderni è molto diversa da quella dei primi matematici delle civiltà antiche; inizialmente la matematica si basò sul concetto di numero, concetto sviluppatosi nella preistoria. La matematica è stata infatti una tra le prime discipline a svilupparsi: evidenze archeologiche mostrano la conoscenza rudimentale di alcune nozioni matematiche molto prima dell'invenzione della scrittura.
In matematica, un numero primo (in breve anche primo) un numero intero positivo che abbia esattamente due divisori distinti. In modo equivalente si pu definire come un numero naturale maggiore di 1 che sia divisibile solamente per 1 e per s stesso; al contrario, un numero maggiore di 1 che abbia pi di due divisori detto composto. Ad esempio 2, 3 e 5 sono primi mentre 4 e 6 non lo sono perch sono divisibili rispettivamente anche per 2 e per 2 e 3. L'unico numero primo pari 2, in quanto tutti gli altri numeri pari sono divisibili per 2. La successione dei numeri primi comincia con 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 Quello di numero primo uno dei concetti basilari della teoria dei numeri, la parte della matematica che studia i numeri interi: l'importanza sta nella possibilit di costruire con essi, attraverso la moltiplicazione, tutti gli altri numeri interi, nonch l'unicit di tale fattorizzazione. I primi sono inoltre infiniti e la loro distribuzione tuttora oggetto di molte ricerche. I numeri primi sono oggetto di studio fin dall'antichit : i primi risultati risalgono infatti agli antichi Greci, e in particolare agli Elementi di Euclide, scritti attorno al 300 a.C. Ciononostante, numerose congetture che li riguardano non sono state ancora dimostrate; tra le pi note vi sono l'ipotesi di Riemann, la congettura di Goldbach e quella dei primi gemelli, indimostrate a pi di un secolo dalla loro formulazione. Essi sono rilevanti anche in molti altri ambiti della matematica pura, come ad esempio l'algebra o la geometria; recentemente hanno assunto un'importanza cruciale anche nella matematica applicata, e in particolare nella crittografia.
Una cronologia degli sviluppi più rilevanti della matematica.
L'aritmetica modulare (a volte detta aritmetica dell'orologio poiché su questo principio si basa il calcolo delle ore a cicli di 12 o 24) rappresenta un importante ramo della matematica. Trova applicazioni nella crittografia, nella teoria dei numeri (in particolare nella ricerca dei numeri primi) ed è alla base di molte delle più comuni operazioni aritmetiche e algebriche. Si tratta di un sistema di aritmetica degli interi, in cui i numeri "si avvolgono su loro stessi" ogni volta che raggiungono i multipli di un determinato numero n, detto modulo. L'aritmetica modulare e la notazione usuale delle congruenze vennero formalmente introdotte da Carl Friedrich Gauss nel suo trattato Disquisitiones Arithmeticae, pubblicato nel 1801.