Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In geometria il toro o toroide (dal latino torus che indicava, fra le altre cose, un tipo di cuscino a forma di ciambella) è la superficie di un anello a sezione circolare in direzione radiale. Può essere ottenuta come superficie di rivoluzione, facendo ruotare una circonferenza, la generatrice, intorno ad un asse di rotazione appartenente allo stesso piano della generatrice, ma disgiunto da questa.
In telecomunicazioni la topologia di rete è il modello geometrico (grafo) finalizzato a rappresentare le relazioni di connettività, fisica o logica, tra gli elementi costituenti la rete stessa (detti anche nodi). Il concetto di topologia si applica a qualsiasi tipo di rete di telecomunicazioni: telefonica, rete di computer, Internet
La storia della matematica ha origine con il concetto di numero e con le prime scoperte matematiche, proseguendo attraverso l'evoluzione nel corso dei secoli dei propri metodi e delle notazioni matematiche il cui uso si sussegue nel tempo. Un aspetto importante della matematica consiste nel fatto che essa si è sviluppata indipendentemente in culture completamente differenti arrivando in molti casi agli stessi risultati: spesso un contatto o una reciproca influenza tra popoli differenti ha portato all'introduzione di nuove idee e a un avanzamento delle conoscenze matematiche, a volte si è visto invece un regredire improvviso della cultura matematica presso alcuni popoli; la matematica moderna ha invece potuto avvalersi dei contributi di persone di tutti i paesi. L'attività svolta dai matematici moderni è molto diversa da quella dei primi matematici delle civiltà antiche; inizialmente la matematica si basò sul concetto di numero, concetto sviluppatosi nella preistoria. La matematica è stata infatti una tra le prime discipline a svilupparsi: evidenze archeologiche mostrano la conoscenza rudimentale di alcune nozioni matematiche molto prima dell'invenzione della scrittura.
In matematica, lo spazio topologico è l'oggetto base della topologia. Si tratta di un concetto molto generale di spazio, accompagnato da una nozione di "vicinanza" definita nel modo più debole possibile. In questo modo molti degli spazi comunemente usati in matematica (come lo spazio euclideo o gli spazi metrici) sono spazi topologici. Intuitivamente, ciò che caratterizza uno spazio topologico è la sua forma, non la distanza fra i suoi punti, che può non essere definita. Nel corso della storia sono state proposte varie definizioni di spazio topologico, e c'è voluto tempo per arrivare a quella generalmente usata oggi: benché possa sembrare piuttosto astratta, si adatta a tutti i concetti alla base della topologia.
Una rete di telecomunicazioni è un insieme di dispositivi e dei loro collegamenti (fisici o logici) che consentono la trasmissione e la ricezione di informazioni di qualsiasi tipo tra due o più utenti situati in posizioni geograficamente distinte, effettuandone il trasferimento attraverso cavi, sistemi radio o altri sistemi elettromagnetici o ottici.
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. Introducendo per il calcolo concetti problematici, quali quello di infinito e di limite, si può passare all'indagine che le ha permesso di divenire basilare in diverse discipline scientifiche e tecniche (dalle scienze naturali all'ingegneria, dall'informatica all'economia), dove viene spesso coniugata con l'analisi numerica.
L'algebra lineare è la branca della matematica che si occupa dello studio dei vettori, spazi vettoriali (o spazi lineari), trasformazioni lineari e sistemi di equazioni lineari. Gli spazi vettoriali sono un tema centrale nella matematica moderna; l'algebra lineare è usata ampiamente nell'algebra astratta, nella geometria e nell'analisi funzionale. L'algebra lineare ha inoltre una rappresentazione concreta nella geometria analitica. Con l'algebra lineare si studiano completamente tutti i fenomeni fisici "lineari", cioè quelli in cui intuitivamente non entrano in gioco distorsioni, turbolenze e fenomeni caotici in generale. Anche fenomeni più complessi, non solo della fisica ma anche delle scienze naturali e sociali, possono essere studiati e ricondotti con le dovute approssimazioni a un modello lineare.