Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La massa (dal greco: μᾶζα, máza, torta d'orzo, grumo di pasta) è una grandezza fisica propria dei corpi materiali che ne determina il comportamento dinamico quando sono soggetti all'influenza di forze esterne. Nel corso della storia della fisica, in particolare della fisica classica, la massa è stata considerata una proprietà intrinseca della materia, rappresentabile con un valore scalare e che si conserva nel tempo e nello spazio, rimanendo costante in ogni sistema isolato. Inoltre, il termine massa è stato utilizzato per indicare due grandezze potenzialmente distinte: l'interazione della materia con il campo gravitazionale e la relazione che lega la forza applicata a un corpo con l'accelerazione su di esso indotta. Tuttavia, è stata verificata l'equivalenza delle due masse in numerosi esperimenti (messi in atto già da Galileo Galilei per primo).Nel quadro più ampio della relatività ristretta, la massa relativistica non è più una proprietà intrinseca della materia, ma dipende anche dal sistema di riferimento in cui viene osservata. La massa relativistica m {\displaystyle m} è legata alla massa a riposo m 0 {\displaystyle m_{0}} , cioè la massa dell'oggetto nel sistema di riferimento in cui è in quiete, tramite il fattore di Lorentz γ {\displaystyle \gamma } : m ( v ) = γ m 0 = 1 1 − ( v / c ) 2 m 0 {\displaystyle m(v)=\gamma \,m_{0}={\frac {1}{\sqrt {1-(v/c)^{2}}}}\;m_{0}} .Poiché la massa relativistica dipende dalla velocità, il concetto classico di massa risulta modificato, non coincidendo più con la definizione newtoniana di costante di proporzionalità fra la forza F applicata a un corpo e l'accelerazione a risultante. Diviene invece una grandezza dinamica proporzionale all'energia complessiva del corpo, tramite la famosa formula E = mc². La conservazione dell'energia meccanica comprende ora, oltre all'energia cinetica e all'energia potenziale, anche un contributo proporzionale alla massa a riposo m0, quale ulteriore forma di energia. L'energia totale relativistica del corpo, data da E = mc², comprende sia l'energia cinetica K sia quella relativa alla massa a riposo, E0 = m0c². A differenza di spazio e tempo, per cui si possono dare definizioni operative in termini di fenomeni naturali, per definire il concetto di massa occorre fare esplicito riferimento alla teoria fisica che ne descrive significato e proprietà. I concetti intuitivi pre-fisici di quantità di materia (da non confondere con quantità di sostanza, misurata in moli) sono troppo vaghi per una definizione operativa, e fanno riferimento a proprietà comuni, l'inerzia e il peso, che vengono considerati ben distinti dalla prima teoria che introduce la massa in termini quantitativi, la dinamica newtoniana. Il concetto di massa diventa più complesso al livello della fisica subatomica dove la presenza di particelle elementari con massa (elettroni, quark, ...) e prive di massa (fotoni, gluoni) non ha ancora una spiegazione in termini fondamentali. In altre parole, non è chiaro il perché alcune particelle siano dotate di massa e altre no. Le principali teorie che cercano di dare una interpretazione alla massa sono: il meccanismo di Higgs, la teoria delle stringhe e la gravità quantistica a loop; di queste, a partire dal 4 luglio 2012 grazie all'acceleratore di particelle LHC, soltanto la Teoria di Higgs ha avuto i primi riscontri sperimentali.
Hendrik Antoon Lorentz (Arnhem, 18 luglio 1853 – Haarlem, 4 febbraio 1928) è stato un fisico olandese. Famoso per le sue ricerche sull'elettromagnetismo (in particolare per la Forza di Lorentz) e l'elettrodinamica, alcuni suoi contributi importanti, come le trasformazioni di Lorentz e alcune ipotesi sulla contrazione dei corpi in movimento, furono utilizzati da Albert Einstein per la descrizione dello spazio e del tempo nella formulazione della relatività ristretta. Ricevette nel 1902 il Premio Nobel per la fisica assieme a Pieter Zeeman per la scoperta e la spiegazione teorica dell'effetto Zeeman. Gli è stato dedicato anche un cratere lunare di 312 km di diametro.
In fisica, la forza di Lorentz, il cui nome è dovuto al fisico olandese Hendrik Lorentz, è la forza che si esercita su un oggetto elettricamente carico per effetto di un campo elettromagnetico.Si tratta della forza subita da una carica che si muove in un campo magnetico e in un campo elettrico. Il contributo dovuto all'interazione con il campo elettrico è direttamente proporzionale al valore della carica dell'oggetto e ha la stessa direzione del campo elettrico, mentre il contributo dovuto all'interazione con il campo magnetico è proporzionale sia alla carica, sia alla velocità dell'oggetto ed è ortogonale sia alla direzione del moto sia a quella del campo magnetico. Pertanto, se la velocità è parallela al campo magnetico l'interazione con il campo magnetico è nulla; in ogni caso, la forza con cui la particella carica in movimento interagisce con il campo magnetico non compie lavoro, ma ha effetto solamente sulla direzione del moto. Alcuni autori con il termine "forza di Lorentz" indicano la forza associata al solo campo magnetico, e la forza risultante di entrambi i contributi è detta talvolta "forma generale della forza di Lorentz" o "forza di Lorentz generalizzata". È alla base di molte tra le applicazioni tecnologiche che sfruttano l'interazione elettromagnetica, per esempio il ciclotrone e altri acceleratori di particelle, il magnetron, lo spettrometro di massa e il microscopio elettronico.