Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Titolo uniforme: The golden ratio. / Mario Livio
Autore principale: Livio, Mario
Serie: BUR Rizzoli. Le scoperte, le invenzioni
Serie: BUR Rizzoli. Le scoperte, le invenzioni
La sezione aurea o rapporto aureo o numero aureo o costante di Fidia o proporzione divina, nell'ambito delle arti figurative e della matematica, indica il numero irrazionale 1,6180339887... ottenuto effettuando il rapporto fra due lunghezze disuguali delle quali la maggiore a {\displaystyle a} è medio proporzionale tra la minore b {\displaystyle b} e la somma delle due ( a + b ) {\displaystyle (a+b)} : a + b a = a b = def φ {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\ {\stackrel {\text{def}}{=}}\ \varphi } Valgono pertanto le seguenti relazioni: a b = a + b a = 1 + b a = 1 + 1 a b {\displaystyle {\frac {a}{b}}={\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\frac {a}{b}}}} Considerando solo il primo e l'ultimo membro e tenendo conto della definizione di φ {\displaystyle \varphi } possiamo anche scrivere φ = 1 + 1 φ {\displaystyle \varphi =1+{\frac {1}{\varphi }}} (1)da cui discende l'equazione polinomiale a coefficienti interi φ 2 − φ − 1 = 0 {\displaystyle \varphi ^{2}-\varphi -1=0} (2)La soluzione positiva di tale equazione (unica ammissibile essendo φ {\displaystyle \varphi } una quantità positiva per definizione) porta alla determinazione del valore della sezione aurea dato da: φ = 1 + 5 2 ≈ 1,618 0339887 {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}\approx 1{,}6180339887} (3)La sezione aurea è quindi un numero irrazionale (ovvero non rappresentabile mediante rapporto di numeri interi data la presenza di 5 {\displaystyle {\sqrt {5}}} nel numeratore della (3)) e algebrico (ovvero soluzione di un'equazione polinomiale a coefficienti interi come evidenziato dalla (2)). Può essere approssimata effettuando il rapporto fra termini consecutivi ( 3 2 , 5 3 , 8 5 , . . . ) {\displaystyle ({\frac {3}{2}},{\frac {5}{3}},{\frac {8}{5}},...)} della successione di Fibonacci a cui è strettamente connessa. I due segmenti a {\displaystyle a} e b {\displaystyle b} possono essere ottenuti graficamente come illustrato nella figura a fianco. La base del rettangolo è pari a ( 1 2 a + 5 2 a ) {\displaystyle ({\frac {1}{2}}a+{\frac {\sqrt {5}}{2}}a)} e la sua altezza è pari ad a {\displaystyle a} : il loro rapporto in base alla (3) dà proprio la sezione aurea. Se nella (1) si sostituisce iterativamente alla φ {\displaystyle \varphi } a denominatore tutto il secondo membro anch'esso pari a φ {\displaystyle \varphi } otteniamo la frazione continua: φ = 1 + 1 1 + 1 1 + 1 1 + 1 1 + . . . {\displaystyle \varphi =1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+...}}}}}}}}} Un'altra rappresentazione di φ {\displaystyle \varphi } come frazione continua è costituita dai quadrati dei numeri di Fibonacci e delle aree del rettangolo aureo: φ = 1 + 1 1 2 + 1 2 1 2 + 2 2 2 2 + 6 2 3 2 + 15 2 5 2 + 40 2 8 2 + 104 2 13 2 + . . . {\displaystyle \varphi =1+{\frac {1}{1^{2}+{\frac {1^{2}}{1^{2}+{\frac {2^{2}}{2^{2}+{\frac {6^{2}}{3^{2}+{\frac {15^{2}}{5^{2}+{\frac {40^{2}}{8^{2}+{\frac {104^{2}}{13^{2}+...}}}}}}}}}}}}}}} Le sue proprietà geometriche e matematiche e la frequente riproposizione in svariati contesti naturali e culturali, apparentemente non collegati tra loro, hanno suscitato per secoli nella mente dell'uomo la conferma dell'esistenza di un rapporto tra macrocosmo e microcosmo, tra Dio e l'uomo, l'universo e la natura: un rapporto tra il tutto e la parte, tra la parte più grande e quella più piccola che si ripete all'infinito attraverso infinite suddivisioni. Diversi filosofi e artisti sono arrivati a cogliervi col tempo un ideale di bellezza e armonia spingendosi a ricercarlo e, in alcuni casi, a ricrearlo nell'ambiente antropico quale canone di bellezza; testimonianza ne è la storia del nome che in epoche più recenti ha assunto gli appellativi di aureo e divino.
La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che la descrisse nei suoi Elementi. La sua geometria consiste nell'assunzione di cinque semplici e intuitivi concetti, detti assiomi o postulati e, nella derivazione da detti assiomi, di altre proposizioni (teoremi) che non abbiano alcuna contraddizione con essi. Questa organizzazione della geometria permise l'introduzione della retta, del piano, della lunghezza e dell'area. Sebbene molte delle conclusioni di Euclide fossero già conosciute dai matematici, egli mostrò come queste potessero essere organizzate in una maniera deduttiva e con un sistema logico. Gli Elementi di Euclide incominciano con un'analisi della geometria piana, attualmente insegnata nelle scuole secondarie e utilizzata come primo approccio alle dimostrazioni matematiche, per poi passare alla geometria solida in tre dimensioni. Dopo Euclide sono nati particolari tipi di geometrie che non necessariamente rispettano i cinque postulati; tali geometrie sono definite non euclidee.
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
Record aggiornato il: 2021-11-25T04:30:20.724Z