Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In matematica una sezione di Dedekind, che prende il nome da Richard Dedekind, in un insieme totalmente ordinato S è una partizione di esso, (A, B), tale che A è un taglio iniziale senza un massimo. La sezione stessa è concettualmente il "divario" tra A e B. I casi originali e più importanti sono le sezioni di Dedekind dei numeri razionali e i numeri reali. Dedekind usò le sezioni per dimostrare la completezza dei reali senza usare l'assioma della scelta (dimostrando l'esistenza di un campo completamente ordinato indipendente dal detto assioma). In una sezione di Dedekind (A, B), A viene detto anche "taglio di Dedekind". La sezione di Dedekind risolve la contraddizione tra la natura continua del continuum dell'asse numerico e la natura discreta dei numeri stessi. Ovunque ci sia una sezione che non sia su un numero razionale reale, viene creato un numero irrazionale (che è anche un numero reale) dal matematico. Attraverso l'uso di questo strumento, si considera esserci un numero reale, che sia razionale o irrazionale, in ogni punto nel continuum della linea numerica, senza discontinuità. Dedekind usò la parola ambigua "sezione" (Schnitt) nel senso geometrico. Dunque essa è un'intersezione di una linea con un'altra linea che la incrocia, non è un divario. Quando una linea ne incrocia un'altra in geometria, si dice che taglia quella linea. In questo caso, una delle linee è l'asse numerico ed entrambe le linee hanno un punto in comune. In quel punto nell'asse numerico, se non esiste un numero razionale, il matematico colloca o posiziona arbitrariamente un numero irrazionale. Questo porta a posizionare un numero reale in ogni punto del continuum.
In matematica, e in particolare in geometria analitica e in geometria proiettiva, con sezione conica, o semplicemente conica, si intende genericamente una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare con un piano. Le sezioni coniche sono state studiate accuratamente in epoca ellenistica, in particolare da Menecmo ed Apollonio di Perga intorno al 200 a.C.; questi diede anche i nomi tuttora in uso per i tre tipi fondamentali di sezioni coniche: ellisse (la circonferenza ne è un caso degenere), parabola e iperbole.
Leonardo Pisano detto il Fibonacci (Pisa, settembre 1170 circa – Pisa, 1242 circa) è stato un matematico italiano. È considerato uno dei più grandi matematici di tutti i tempi. Con altri dell'epoca contribuì alla rinascita delle scienze esatte dopo la decadenza dell'età tardo-antica e dell'Alto Medioevo. Con lui, in Europa, ci fu l'unione fra i procedimenti della geometria greca euclidea (gli Elementi) e gli strumenti matematici di calcolo elaborati dalla scienza araba (in particolare egli studiò per la parte algebrica il Liber embadorum dello studioso ebreo spagnolo Abraham ibn ‛Ezra).
La successione di Fibonacci (detta anche successione aurea), indicata con F n {\displaystyle F_{n}} o con F i b ( n ) {\displaystyle Fib(n)} , in matematica indica una successione di numeri interi in cui ciascun numero è la somma dei due precedenti, eccetto i primi due che sono, per definizione: F 0 = 0 {\displaystyle F_{0}=0} e F 1 = 1 {\displaystyle F_{1}=1} . Questa successione è definita ricorsivamente secondo la seguente regola: F 0 = 0 , {\displaystyle F_{0}=0,} F 1 = 1 , {\displaystyle F_{1}=1,} F n = F n − 1 + F n − 2 {\displaystyle F_{n}=F_{n-1}+F_{n-2}} (per ogni n>1)Gli elementi F n {\displaystyle F_{n}} sono anche detti numeri di Fibonacci. I primi termini della successione di Fibonacci, che prende il nome dal matematico pisano del XIII secolo Leonardo Fibonacci, sono: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , … {\displaystyle 0,1,1,2,3,5,8,13,21,34,55,89,144,233,\dots }
Il Liber abbaci, noto anche come Liber abaci, è un trattato di argomento matematico. Scritto in latino medievale nel 1202 dal matematico pisano Leonardo Fibonacci, che nel 1228 ne pubblicò una seconda stesura, ha svolto un ruolo fondamentale nella storia della matematica occidentale ed è ritenuto uno dei libri più importanti e fecondi del Medioevo.Il Liber abbaci è un ponderoso trattato di aritmetica e algebra con il quale, all'inizio del XIII secolo, Fibonacci ha introdotto in Europa il sistema numerico decimale indo-arabico e i principali metodi di calcolo ad esso relativi. Il libro non tratta l'utilizzo dell'abaco, sicché il suo titolo può essere tradotto in Libro del calcolo: dato che abaco per i greci, i romani e i maestri d'abaco dei secoli precedenti era uno strumento di calcolo, secondo alcuni studiosi il titolo non sarebbe autoriale, per quanto non vi siano dubbi che il Fibonacci abbia in effetti riservato questa denominazione all'aritmetica-algebra applicativa in genere. Su questo trattato, per oltre tre secoli, si formeranno maestri e allievi della scuola toscana. L'equilibrio fra teoria e pratica era di fatto raggiunto. Fibonacci dice: "Ho dimostrato con prove certe quasi tutto quello che ho trattato". Quando Fibonacci scrisse il trattato, in Europa gli scritti di matematica avanzata erano quasi del tutto inesistenti, a parte le traduzioni delle opere classiche (gli Elementi di Euclide, per esempio), che però erano ancora molto poco diffuse, e i cosiddetti Algorismi, scritti di aritmetica latina che prendevano il nome dal matematico al-Khwarizmi. Fibonacci compì un'operazione unica, diversa da quelle degli Arabi, se non per l'originalità certo per la mole. La prima edizione a stampa del Liber abbaci è stata curata da Baldassarre Boncompagni Ludovisi nel 1857, che si basò su un manoscritto di XIV secolo recante al suo interno una versione databile al 1228.
Michele Scoto (in inglese Michael Scot; Scozia, 1175 circa – 1232 circa o 1236) è stato un filosofo scolastico, astrologo e alchimista scozzese, attivo presso la corte siciliana di Federico II di Svevia. È considerato il più importante averroista medievale, anche se non fu un seguace delle tesi averroistiche, il primo a far conoscere i commenti di Averroè alle opere aristoteliche in Occidente, contribuendo al recupero del retaggio filosofico aristotelico nell'Europa latina.
Matematica e architettura sono correlate, poiché, come con altre arti, gli architetti usano la matematica per diverse ragioni. Oltre alla matematica necessaria per la progettazione di edifici, gli architetti usano la geometria per definire la forma spaziale di un edificio, dai Pitagorici del VI secolo a.C. in poi, per creare forme considerate armoniose, e quindi per disporre gli edifici e l'ambiente circostante secondo principi matematici, estetici e talvolta religiosi, per decorare edifici con oggetti matematici come tassellatura e per raggiungere obiettivi ambientali, come ridurre al minimo la velocità del vento attorno alle basi di edifici molto alti. Nell'antico Egitto, nell'antica Grecia, in India e nel mondo islamico, furono costruiti edifici come piramidi, templi, moschee, palazzi e mausolei con proporzioni specifiche per motivi religiosi. Nell'architettura islamica, forme geometriche e motivi geometrici nella piastrellatura sono utilizzati per decorare edifici, sia all'interno che all'esterno. Alcuni templi indù hanno una struttura simile a un frattale in cui le parti assomigliano al tutto, trasmettendo un messaggio sull'infinito nella cosmologia indù. Nell'architettura cinese, i tulou della provincia del Fujian sono strutture difensive circolari e molto comuni. Nel XXI secolo, gli ornamenti matematici vengono nuovamente utilizzati per coprire edifici pubblici. Nell'architettura rinascimentale, la simmetria e la proporzione sono state deliberatamente enfatizzate da architetti come Leon Battista Alberti, Sebastiano Serlio e Andrea Palladio, influenzati dal De architectura di Vitruvio dell'antica Roma e dall'aritmetica dei Pitagorici dell'antica Grecia. Alla fine del XIX secolo, Vladimir Shukhov in Russia e Antoni Gaudí a Barcellona furono i pionieri nell'uso delle strutture iperboloidi. Nella Sagrada Família, Gaudí incorporava anche paraboloidi iperbolici, tassellazioni, archi catenari, catenoidi, elicoidi e superfici rigate. Nel XX secolo, stili come l'architettura moderna e il decostruttivismo hanno esplorato diverse geometrie per ottenere gli effetti desiderati. Superfici minime sono state sfruttate in coperture simili a tende come all'Aeroporto Internazionale di Denver, mentre Richard Buckminster Fuller ha aperto la strada all'uso delle forti strutture a guscio sottile note come cupole geodetiche.
Baldassarre Boncompagni Ludovisi, principe di Piombino (Roma, 10 maggio 1821 – Roma, 13 aprile 1894), è stato un matematico e storico della scienza italiano. Si occupò di storia della matematica; diresse e curò il Bullettino di bibliografia e di storia delle scienze matematiche e fisiche (1868-1887), il primo periodico italiano interamente dedicato alla storia della matematica. Inoltre curò la prima edizione moderna delle opere di Leonardo Fibonacci: il Liber abbaci, la Practica Geometriae, il Liber quadratorum, il Flos e l'Epistola ad magistrum Theodorum.