apri su Wikipedia

Successione di Fibonacci

La successione di Fibonacci (detta anche successione aurea), indicata con F n {\displaystyle F_{n}} o con F i b ( n ) {\displaystyle Fib(n)} , in matematica indica una successione di numeri interi in cui ciascun numero è la somma dei due precedenti, eccetto i primi due che sono, per definizione: F 0 = 0 {\displaystyle F_{0}=0} e F 1 = 1 {\displaystyle F_{1}=1} . Questa successione è definita ricorsivamente secondo la seguente regola: F 0 = 0 , {\displaystyle F_{0}=0,} F 1 = 1 , {\displaystyle F_{1}=1,} F n = F n − 1 + F n − 2 {\displaystyle F_{n}=F_{n-1}+F_{n-2}} (per ogni n>1)Gli elementi F n {\displaystyle F_{n}} sono anche detti numeri di Fibonacci. I primi termini della successione di Fibonacci, che prende il nome dal matematico pisano del XIII secolo Leonardo Fibonacci, sono: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , … {\displaystyle 0,1,1,2,3,5,8,13,21,34,55,89,144,233,\dots }

Risorse suggerite a chi è interessato all'argomento "Successione di Fibonacci"

Sperimentale

Argomenti d'interesse

Sperimentale