Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In matematica una sezione di Dedekind, che prende il nome da Richard Dedekind, in un insieme totalmente ordinato S è una partizione di esso, (A, B), tale che A è un taglio iniziale senza un massimo. La sezione stessa è concettualmente il "divario" tra A e B. I casi originali e più importanti sono le sezioni di Dedekind dei numeri razionali e i numeri reali. Dedekind usò le sezioni per dimostrare la completezza dei reali senza usare l'assioma della scelta (dimostrando l'esistenza di un campo completamente ordinato indipendente dal detto assioma). In una sezione di Dedekind (A, B), A viene detto anche "taglio di Dedekind". La sezione di Dedekind risolve la contraddizione tra la natura continua del continuum dell'asse numerico e la natura discreta dei numeri stessi. Ovunque ci sia una sezione che non sia su un numero razionale reale, viene creato un numero irrazionale (che è anche un numero reale) dal matematico. Attraverso l'uso di questo strumento, si considera esserci un numero reale, che sia razionale o irrazionale, in ogni punto nel continuum della linea numerica, senza discontinuità. Dedekind usò la parola ambigua "sezione" (Schnitt) nel senso geometrico. Dunque essa è un'intersezione di una linea con un'altra linea che la incrocia, non è un divario. Quando una linea ne incrocia un'altra in geometria, si dice che taglia quella linea. In questo caso, una delle linee è l'asse numerico ed entrambe le linee hanno un punto in comune. In quel punto nell'asse numerico, se non esiste un numero razionale, il matematico colloca o posiziona arbitrariamente un numero irrazionale. Questo porta a posizionare un numero reale in ogni punto del continuum.
La sezione aurea o rapporto aureo o numero aureo o costante di Fidia o proporzione divina, nell'ambito delle arti figurative e della matematica, indica il numero irrazionale 1,6180339887... ottenuto effettuando il rapporto fra due lunghezze disuguali delle quali la maggiore a {\displaystyle a} è medio proporzionale tra la minore b {\displaystyle b} e la somma delle due ( a + b ) {\displaystyle (a+b)} : a + b a = a b = def φ {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\ {\stackrel {\text{def}}{=}}\ \varphi } Valgono pertanto le seguenti relazioni: a b = a + b a = 1 + b a = 1 + 1 a b {\displaystyle {\frac {a}{b}}={\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\frac {a}{b}}}} Considerando solo il primo e l'ultimo membro e tenendo conto della definizione di φ {\displaystyle \varphi } possiamo anche scrivere φ = 1 + 1 φ {\displaystyle \varphi =1+{\frac {1}{\varphi }}} (1)da cui discende l'equazione polinomiale a coefficienti interi φ 2 − φ − 1 = 0 {\displaystyle \varphi ^{2}-\varphi -1=0} (2)La soluzione positiva di tale equazione (unica ammissibile essendo φ {\displaystyle \varphi } una quantità positiva per definizione) porta alla determinazione del valore della sezione aurea dato da: φ = 1 + 5 2 ≈ 1,618 0339887 {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}\approx 1{,}6180339887} (3)La sezione aurea è quindi un numero irrazionale (ovvero non rappresentabile mediante rapporto di numeri interi data la presenza di 5 {\displaystyle {\sqrt {5}}} nel numeratore della (3)) e algebrico (ovvero soluzione di un'equazione polinomiale a coefficienti interi come evidenziato dalla (2)). Può essere approssimata effettuando il rapporto fra termini consecutivi ( 3 2 , 5 3 , 8 5 , . . . ) {\displaystyle ({\frac {3}{2}},{\frac {5}{3}},{\frac {8}{5}},...)} della successione di Fibonacci a cui è strettamente connessa. I due segmenti a {\displaystyle a} e b {\displaystyle b} possono essere ottenuti graficamente come illustrato nella figura a fianco. La base del rettangolo è pari a ( 1 2 a + 5 2 a ) {\displaystyle ({\frac {1}{2}}a+{\frac {\sqrt {5}}{2}}a)} e la sua altezza è pari ad a {\displaystyle a} : il loro rapporto in base alla (3) dà proprio la sezione aurea. Se nella (1) si sostituisce iterativamente alla φ {\displaystyle \varphi } a denominatore tutto il secondo membro anch'esso pari a φ {\displaystyle \varphi } otteniamo la frazione continua: φ = 1 + 1 1 + 1 1 + 1 1 + 1 1 + . . . {\displaystyle \varphi =1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+{\frac {1}{1+...}}}}}}}}} Un'altra rappresentazione di φ {\displaystyle \varphi } come frazione continua è costituita dai quadrati dei numeri di Fibonacci e delle aree del rettangolo aureo: φ = 1 + 1 1 2 + 1 2 1 2 + 2 2 2 2 + 6 2 3 2 + 15 2 5 2 + 40 2 8 2 + 104 2 13 2 + . . . {\displaystyle \varphi =1+{\frac {1}{1^{2}+{\frac {1^{2}}{1^{2}+{\frac {2^{2}}{2^{2}+{\frac {6^{2}}{3^{2}+{\frac {15^{2}}{5^{2}+{\frac {40^{2}}{8^{2}+{\frac {104^{2}}{13^{2}+...}}}}}}}}}}}}}}} Le sue proprietà geometriche e matematiche e la frequente riproposizione in svariati contesti naturali e culturali, apparentemente non collegati tra loro, hanno suscitato per secoli nella mente dell'uomo la conferma dell'esistenza di un rapporto tra macrocosmo e microcosmo, tra Dio e l'uomo, l'universo e la natura: un rapporto tra il tutto e la parte, tra la parte più grande e quella più piccola che si ripete all'infinito attraverso infinite suddivisioni. Diversi filosofi e artisti sono arrivati a cogliervi col tempo un ideale di bellezza e armonia spingendosi a ricercarlo e, in alcuni casi, a ricrearlo nell'ambiente antropico quale canone di bellezza; testimonianza ne è la storia del nome che in epoche più recenti ha assunto gli appellativi di aureo e divino.
La sezione 28 o clausola 28 o articolo 28 del Local Government Act del 1988 portò l'aggiunta della Sezione 2A al Local Government Act del 1986 che interessò Inghilterra, Galles e Scozia. L'emendamento entrò in vigore il 24 maggio 1988 obbligando le autorità locali a: "non promuovere intenzionalmente l'omosessualità o pubblicare materiale con l'intenzione di promuovere l'omosessualità" o "promuovere l'insegnamento in qualsiasi scuola finanziata dallo stato dell'accettabilità dell'omosessualità come pretesa relazione familiare". La sezione venne abrogata il 21 giugno 2000 in Scozia dall’Ethical Standards in Public Life etc. (Scotland) Act 2000 (uno dei primi atti legislativi emanati dal nuovo parlamento scozzese) e il 18 novembre 2003 nel resto del Regno Unito dalla sezione 122 del Local Government Act 2003. L'esistenza della legge causò la chiusura di molti gruppi di sostegno LGBT e la limitazione delle attività didattiche attraverso la censura o l'autocensura.
La parabola è una particolare figura piana. Si tratta di una particolare sezione conica, come l'ellisse e l'iperbole. Può essere definita come il luogo geometrico dei punti equidistanti da una retta (detta direttrice) e da un punto fisso (detto fuoco). La parabola è una curva matematica molto importante ed ha numerose applicazioni in fisica ed in ingegneria.
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
La figura geometrica o forma geometrica è l'ente astratto intorno al quale è articolata la geometria ed altri rami affini della matematica, come la trigonometria. Elementarmente, la figura geometrica può definirsi come un insieme continuo di punti e di relazioni tra gli stessi punti, caratterizzato da pertinenze quantitative e da pertinenze dimensionali.
La ceramica a figure nere è una delle tecniche che venivano impiegate per la decorazione della ceramica greca e di quella dell'Antica Roma. Benché il termine indichi propriamente la tecnica, esso viene usato, in ambiente anglosassone utilizzando le convenzionali iniziali maiuscole, anche per indicare lo stile ceramografico tipico del VI secolo a.C., che di questa tecnica si avvalse prevalentemente. Le figure nere furono introdotte a Corinto all'inizio del VII secolo a.C. Ad Atene la nuova tecnica venne adottata senza riserve solo intorno alla metà del VII a.C., si sviluppò pienamente nell'ultimo quarto (dal 625 a.C.) e raggiunse il suo apogeo nel secolo successivo. A partire dal 530 a.C., fu gradualmente sostituita dalla tecnica detta a figure rosse.