Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In geometria il punto è un concetto primitivo. Intuitivamente equivale ad un'entità adimensionale spaziale, per cui può essere considerato semplicemente come una posizione, cioè come una coordinata. In topologia ed analisi matematica, viene spesso chiamato punto un elemento qualunque di uno spazio topologico e, in particolare, di uno spazio funzionale.
La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che la descrisse nei suoi Elementi. La sua geometria consiste nell'assunzione di cinque semplici e intuitivi concetti, detti assiomi o postulati e, nella derivazione da detti assiomi, di altre proposizioni (teoremi) che non abbiano alcuna contraddizione con essi. Questa organizzazione della geometria permise l'introduzione della retta, del piano, della lunghezza e dell'area. Sebbene molte delle conclusioni di Euclide fossero già conosciute dai matematici, egli mostrò come queste potessero essere organizzate in una maniera deduttiva e con un sistema logico. Gli Elementi di Euclide incominciano con un'analisi della geometria piana, attualmente insegnata nelle scuole secondarie e utilizzata come primo approccio alle dimostrazioni matematiche, per poi passare alla geometria solida in tre dimensioni. Dopo Euclide sono nati particolari tipi di geometrie che non necessariamente rispettano i cinque postulati; tali geometrie sono definite non euclidee.
La geometria descrittiva è la scienza che permette, attraverso determinate costruzioni geometriche, di rappresentare in modo inequivocabile, su uno o più piani, oggetti bidimensionali e tridimensionali. La rappresentazione può essere finalizzata a visualizzare oggetti già esistenti, come nel rilievo (per lo più architettonico), e/o oggetti mentalmente concepiti, come nella progettazione di manufatti tridimensionali.I metodi di rappresentazione (di prospettiva, di assonometria e di Monge) della geometria descrittiva si basano principalmente su due operazioni fondamentali, dette operazioni di proiezione e sezione. Gli assiomi della geometria descrittiva elementare sono sostanzialmente i postulati di Euclide, con l'aggiunta della nozione di ente improprio (punto, retta e piano), secondo una costruzione analoga a quella della geometria proiettiva.
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
In algebra lineare e analisi funzionale, una proiezione è una trasformazione lineare P {\displaystyle P} definita da uno spazio vettoriale in sé stesso (endomorfismo) che è idempotente, cioè tale per cui P 2 = P {\displaystyle P^{2}=P} : applicare due volte la trasformazione fornisce lo stesso risultato che applicandola una volta sola (dunque l'immagine rimane inalterata). Nonostante la definizione sia piuttosto astratta, si tratta di un concetto matematico simile (e in qualche modo legato) alla proiezione cartografica.
Le coniche (greco Conikà) è l'opera principale di Apollonio di Perga e viene considerata il suo capolavoro. Scritta intorno alla fine del III secolo avanti Cristo, fu un testo molto influente ed ha procurato all'autore il soprannome di Grande Geometra. L'opera fu scritta in più fasi: una prima versione fu redatta ad Alessandria d'Egitto, su sollecitazione del geometra Neucrate. Fu però a Pergamo che, in epoca successiva, fu formulata la versione definitiva, come testimonia la dedica al re di Pergamo Attalo I contenuta nel IV e nel VII libro e come spiega Apollonio stesso nella lettera di introduzione al libro I, che indica i primi quattro libri di cui si compone l'opera come un'introduzione alle proprietà già conosciute. Proprio questi quattro libri ci sono giunti in versione originale, con i commentari di Eutocio, mentre il V, il VI e il VII libro sono pervenuti solo nella traduzione araba di Thabit ibn Corra e l'VIII è invece andato perduto. Questa seconda parte dell'opera è dedicata ad indagini innovative.
L'assonometria (dal greco áxon = asse e métron = misura, cioè misura in base agli assi) è un metodo di rappresentazione numerica trattato dalla geometria descrittiva. Fu formalizzata dall'inglese William Farish nella prima metà dell'Ottocento. Rappresentazioni assonometriche erano già utilizzate nel tardo medioevo per la realizzazione di fortezze militari ma venivano derivate dalla prospettiva tanto da essere chiamate prospettive militari. L'assonometria si basa sull'utilizzo di tre assi geometrici (semirette) che hanno un unico punto di origine O e sui quali sono riportate le tre dimensioni che un oggetto possiede nello spazio reale. Il principio alla base dell'assonometria è la proiezione di un oggetto geometrico su un piano (piano di proiezione o quadro), lungo la direzione determinata da un punto improprio (retta di proiezione o centro di proiezione). Una caratteristica dell'assonometria è di poter rappresentare contemporaneamente tre facce di uno stesso parallelepipedo rettangolo. Un'assonometria viene detta ortogonale oppure obliqua a seconda che la direzione di proiezione sia o meno ortogonale al piano di proiezione. Inoltre, a seconda delle riduzioni assonometriche, ovvero del riscalamento dovuto alla proiezione, delle tre rette del sistema di riferimento (unità di misura), un'assonometria, tanto ortogonale che obliqua, può essere monometrica, dimetrica oppure trimetrica.
Francesco Barozzi, in latino Franciscus Barocius (Candia, 9 agosto 1537 – Venezia, 23 novembre 1604), è stato un matematico italiano. Proveniva da una famiglia patrizia con importanti possedimenti a Creta, e dopo gli studi all'Università di Padova visse a Venezia, con frequenti viaggi nei suoi possedimenti. Professore di geometria, si occupò attivamente di studi eterogeni in corrispondenza dei numerosi matematici contemporanei tipici dell'umanesimo che contribuirono alla rivoluzione scientifica.
In geometria, due figure si dicono congruenti (dal latino congruens: concordante, appropriato), quando hanno la stessa forma e dimensioni, quindi quando sono perfettamente sovrapponibili. Formalmente, sono congruenti quando è possibile trasformare l'una nell'altra per mezzo di una isometria, ovvero per mezzo di una combinazione di traslazioni, rotazioni e riflessioni. La congruenza di due figure piane si può interpretare visivamente in questo modo: tagliando una figura con le forbici è possibile sovrapporla all'altra in modo che entrambe combacino perfettamente. Nel suo Grundlagen der Geometrie, Hilbert descrive la congruenza come una delle tre relazioni binarie primitive della geometria euclidea e ne delinea le proprietà transitiva, riflessiva e simmetrica. Pertanto, la congruenza è una relazione d'equivalenza. Le prime due figure sono congruenti. La terza ha sì la stessa forma, ma è più piccola: essa è perciò simile alle prime due, ma non congruente. L'ultima figura non è né congruente, né simile alle altre tre.
L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. Introducendo per il calcolo concetti problematici, quali quello di infinito e di limite, si può passare all'indagine che le ha permesso di divenire basilare in diverse discipline scientifiche e tecniche (dalle scienze naturali all'ingegneria, dall'informatica all'economia), dove viene spesso coniugata con l'analisi numerica.
La matematica (dal greco μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere") è la disciplina che studia le quantità (i numeri), lo spazio, le strutture e i calcoli.Per l'origine del termine occorre andare al vocabolo egizio maat, nella cui composizione appare il simbolo del cubito, strumento di misura lineare, un primo accostamento al concetto matematico. Simbolo geometrico di questo ordine è un rettangolo, da cui sorge la testa piumata della dea egizia Maat, personificazione dei concetti di ordine, verità e giustizia. Figlia di Ra, unico Uno, creatore di ogni cosa, la sua potenza demiurgica è limitata e ordinata da leggi naturali e matematiche. All'inizio del papiro di Rhind si trova questa affermazione: "Il calcolo accurato è la porta d'accesso alla conoscenza di tutte le cose e agli oscuri misteri". Il termine maat riappare in copto, in babilonese e in greco. In greco la radice ma, math, met entra nella composizione di vocaboli contenenti le idee di ragione, disciplina, scienza, istruzione, giusta misura, e in latino il termine materia indica ciò che può essere misurato. Col termine matematica di solito si designa la disciplina (e il relativo corpo di conoscenze) che studia problemi concernenti quantità, estensioni e figure spaziali, movimenti di corpi, e tutte le strutture che permettono di trattare questi aspetti in modo generale. La matematica fa largo uso degli strumenti della logica e sviluppa le proprie conoscenze nel quadro di sistemi ipotetico-deduttivi che, a partire da definizioni rigorose e da assiomi riguardanti proprietà degli oggetti definiti (risultati da un procedimento di astrazione, come triangoli, funzioni, vettori ecc.), raggiunge nuove certezze, per mezzo delle dimostrazioni, attorno a proprietà meno intuitive degli oggetti stessi (espresse dai teoremi). La potenza e la generalità dei risultati della matematica le ha reso l'appellativo di regina delle scienze: ogni disciplina scientifica o tecnica, dalla fisica all'ingegneria, dall'economia all'informatica, fa largo uso degli strumenti di analisi, di calcolo e di modellazione offerti dalla matematica.
Le leggi razziali fasciste furono un insieme di provvedimenti legislativi e amministrativi (leggi, ordinanze, circolari) applicati in Italia fra il 1938 e il primo quinquennio degli anni quaranta, inizialmente dal regime fascista e poi dalla Repubblica Sociale Italiana. Esse furono rivolte prevalentemente contro le persone ebree. Il loro contenuto fu annunciato per la prima volta il 18 settembre 1938 a Trieste da Benito Mussolini, da un palco posto davanti al Municipio in Piazza Unità d'Italia, in occasione di una sua visita alla città. Furono abrogate con i regi decreti-legge n. 25 e 26 del 20 gennaio 1944, emanati durante il Regno del Sud.
La matematica, nel corso della sua storia, è diventata una materia estremamente diversificata, di conseguenza si è reso necessario categorizzarne le aree. Nel frattempo sono sorti un certo numero di schemi di classificazione, e, anche se condividono alcune somiglianze, in essi sono presenti differenze dovute in parte ai diversi scopi per cui sono stati creati. Inoltre, dal momento che la matematica si evolve, questi schemi di classificazione devono a loro volta evolversi, anche a causa della scoperta di nuove aree o di collegamenti appena individuati tra quelle preesistenti. La classificazione inoltre è resa più difficile da parte di alcuni settori, spesso i più attivi, che si situano ai confini delle diverse aree. La matematica è divisa tradizionalmente in matematica pura, studiata per il suo interesse intrinseco, e matematica applicata, la matematica applicabile direttamente a problemi del mondo reale. Questa divisione non è sempre chiara e molti argomenti sono stati sviluppati nello studio della matematica pura per trovare in seguito inaspettate applicazioni. Più recentemente sono emerse divisioni di massima, come la matematica discreta e matematica computazionale.
Mestre è una località del comune di Venezia, di cui rappresenta l'agglomerato urbano più popoloso con 88 552 abitanti. Costituisce il centro principale della terraferma veneziana, che conta circa 180 000 abitanti. Già comune autonomo, nel 1926 Mestre fu integrata nel Comune di Venezia e nel secondo dopoguerra ne accolse lo sviluppo urbano, diventando sede di quartieri residenziali, di servizi e di importanti realtà economico-produttive. Nell'ambito del Comune di Venezia il territorio mestrino ricade perlopiù sotto la municipalità di Mestre-Carpenedo.
La geometria simplettica è la branca della geometria differenziale e della topologia differenziale che studia le varietà simplettiche, cioè varietà differenziabili equipaggiate con una 2-forma chiusa non degenere. Ha le sue origini nella meccanica hamiltoniana, in cui lo spazio delle fasi di certi sistemi prende la struttura di varietà simplettica. Il termine "simplettica" è stato coniato da Hermann Weyl, traducendolo dal greco συμπλεκτικός, come calco di "complessa", con cui il termine condivide lo stesso suffisso indo-europeo -plek. Il nome è stato scelto anche per sottolineare le profonde connessioni tra strutture simplettiche e strutture complesse.