Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La teoria degli insiemi è una teoria matematica posta ai fondamenti della matematica stessa, collocandosi nell'ambito della logica matematica. Prima della prima metà del XIX secolo la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico. La nozione è stata sviluppata nella seconda metà del XIX secolo dal matematico tedesco Georg Cantor, è stata al centro dei dibattiti sui fondamenti dal 1890 al 1930 ed ha ricevuto le prime sistemazioni assiomatiche per merito di Ernst Zermelo, Adolf Fraenkel, Paul Bernays, Kurt Gödel, John von Neumann e Thoralf Skolem, Gottlob Frege (le convenzioni linguistico-formali, come il quantificatore universale ed esistenziale) e Giuseppe Peano (notazione e sintassi). In questo periodo si sono assestati due sistemi di assiomi chiamati sistema assiomatico di Zermelo-Fraenkel e sistema assiomatico di Von Neumann-Bernays-Gödel. Successivamente si sono affrontate le tematiche riguardanti il problema della completezza dei sistemi di assiomi (v. teorema di incompletezza di Gödel), i rapporti con la teoria della calcolabilità (vedasi anche macchina di Turing) e la compatibilità dei sistemi di assiomi con l'assioma della scelta e con assiomi equivalenti o simili. Accanto a differenti consolidate teorie formali degli insiemi (vedi anche teoria assiomatica degli insiemi) esistono esposizioni più intuitive che costituiscono la cosiddetta teoria ingenua degli insiemi. Elenchiamo le entità principali della teoria degli insiemi.
Un numero complesso è definito come un numero della forma x + y i {\displaystyle x+yi} con x {\displaystyle x} e y {\displaystyle y} numeri reali e i {\displaystyle i} una soluzione dell'equazione x 2 = − 1 {\displaystyle x^{2}=-1} ed è detta unità immaginaria. I numeri complessi sono usati in tutti i campi della matematica, in molti campi della fisica (notoriamente in meccanica quantistica), nonché in ingegneria, specialmente in elettronica/telecomunicazioni o elettrotecnica, per la loro utilità nel rappresentare onde elettromagnetiche e correnti elettriche ad andamento temporale sinusoidale. In matematica i numeri complessi formano un campo (nonché un'algebra reale bidimensionale) e sono generalmente visualizzati come punti di un piano, detto piano complesso. La proprietà più importante dei numeri complessi è basata sul teorema fondamentale dell'algebra, secondo il quale qualunque equazione polinomiale di grado n {\displaystyle n} ha n {\displaystyle n} soluzioni complesse, non necessariamente distinte.
L'algebra di Boole (anche detta algebra booleana o reticolo booleano), in matematica e logica matematica, è il ramo dell'algebra in cui le variabili possono assumere solamente i valori vero e falso (valori di verità), generalmente denotati rispettivamente come 1 e 0.