Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
Il calcolo infinitesimale è la branca fondante dell'analisi matematica che studia il "comportamento locale" di una funzione tramite le nozioni di continuità e limite, usato in quasi tutti i campi della matematica e della fisica, e della scienza in generale. Le funzioni a cui si applica sono a variabile reale o complessa. Tramite la nozione di limite, il calcolo infinitesimale definisce e studia le nozioni di convergenza di una successione o di una serie, continuità, derivata e integrale.
L'analisi numerica (detta anche calcolo numerico o calcolo scientifico) è una branca della matematica applicata che risolve i modelli prodotti dall'analisi matematica alle scomposizioni finite normalmente praticabili, coinvolgendo il concetto di approssimazione. I suoi strumenti, detti algoritmi, sono caratterizzabili in base a velocità di convergenza, stabilità numerica e computabilità.
L'analisi matematica è il ramo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un oggetto denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una funzione utilizzando gli strumenti del calcolo differenziale e del calcolo integrale. Introducendo per il calcolo concetti problematici, quali quello di infinito e di limite, si può passare all'indagine che le ha permesso di divenire basilare in diverse discipline scientifiche e tecniche (dalle scienze naturali all'ingegneria, dall'informatica all'economia), dove viene spesso coniugata con l'analisi numerica.