Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che la descrisse nei suoi Elementi. La sua geometria consiste nell'assunzione di cinque semplici e intuitivi concetti, detti assiomi o postulati e, nella derivazione da detti assiomi, di altre proposizioni (teoremi) che non abbiano alcuna contraddizione con essi. Questa organizzazione della geometria permise l'introduzione della retta, del piano, della lunghezza e dell'area. Sebbene molte delle conclusioni di Euclide fossero già conosciute dai matematici, egli mostrò come queste potessero essere organizzate in una maniera deduttiva e con un sistema logico. Gli Elementi di Euclide incominciano con un'analisi della geometria piana, attualmente insegnata nelle scuole secondarie e utilizzata come primo approccio alle dimostrazioni matematiche, per poi passare alla geometria solida in tre dimensioni. Dopo Euclide sono nati particolari tipi di geometrie che non necessariamente rispettano i cinque postulati; tali geometrie sono definite non euclidee.
Euclide (in greco antico: Εὐκλείδης, Eukléidēs; IV secolo a.C. – III secolo a.C.) è stato un matematico e filosofo greco antico. Si occupò di vari ambiti, dall’ottica all’astronomia, dalla musica alla meccanica, oltre, ovviamente, alla matematica. Gli "Elementi", il suo lavoro più noto, è una delle più influenti opere di tutta la storia della matematica e fu uno dei principali testi per l'insegnamento della geometria dalla sua pubblicazione fino agli inizi del ‘900.
Il V postulato di Euclide è il postulato più conosciuto fra quelli che il matematico Euclide enuncia nei suoi Elementi. I matematici si sono cimentati per più di duemila anni nel tentativo di dedurlo dai primi quattro postulati, finché nell'Ottocento hanno effettivamente dimostrato la sua indeducibilità. Modificando questo postulato si creano geometrie diverse, dette non euclidee.
In geometria, il primo teorema di Euclide è un teorema attinente al triangolo rettangolo che deriva, assieme al secondo, dalla proposizione 8 del VI libro degli Elementi di Euclide; nei testi scolastici può essere enunciato in due modi diversi a seconda della proprietà che si desidera sottolineare: mediante l'equiestensione tra figure: mediante relazioni tra segmenti:
In matematica, in particolare in geometria solida, il termine solido platonico è sinonimo di solido regolare e di poliedro convesso regolare, e indica un poliedro convesso che ha per facce poligoni regolari congruenti (cioè sovrapponibili esattamente) e che ha tutti gli spigoli e i vertici equivalenti. Ne consegue che anche i suoi angoloidi hanno la stessa ampiezza. Il nome di ogni figura è derivata dal numero delle sue facce, rispettivamente 4, 6, 8, 12, e 20.
In geometria il punto è un concetto primitivo. Intuitivamente equivale ad un'entità adimensionale spaziale, per cui può essere considerato semplicemente come una posizione, cioè come una coordinata. In topologia ed analisi matematica, viene spesso chiamato punto un elemento qualunque di uno spazio topologico e, in particolare, di uno spazio funzionale.
In geometria l'icosaèdro (dal latino icosahedrum, dal greco eikosi, che significa venti, e edra, che significa base) è un qualsiasi poliedro con venti facce. Con il termine icosaedro si intende però generalmente l'icosaedro regolare: nell'icosaedro regolare, le facce sono triangoli equilateri.
In geometria, i criteri di congruenza dei triangoli sono un postulato e due teoremi tramite i quali è possibile dimostrare la congruenza fra triangoli, nel caso alcuni loro angoli o lati siano congruenti. I criteri di congruenza sono tre, a cui se ne può aggiungere un quarto che altro non è che una formulazione alternativa del secondo.
L'algoritmo di Euclide è un algoritmo per trovare il massimo comune divisore (indicato di seguito con MCD) tra due numeri interi. È uno degli algoritmi più antichi conosciuti, essendo presente negli Elementi di Euclide intorno al 300 a.C.; tuttavia, probabilmente l'algoritmo non è stato scoperto da Euclide, ma potrebbe essere stato conosciuto anche 200 anni prima. Certamente era conosciuto da Eudosso di Cnido intorno al 375 a.C.; Aristotele (intorno al 330 a.C.) ne ha fatto cenno ne I topici, 158b, 29-35. L'algoritmo non richiede la fattorizzazione dei due interi. Dati due numeri naturali a e b, si controlla se b è zero (questa prima fase rientra ovviamente nell'ambito di un uso moderno dell'algoritmo ed era ignorata da Euclide e dai suoi predecessori, che non conoscevano lo zero). Se lo è, a è il MCD. Se non lo è, si divide a / b e si assegna ad r il resto della divisione (operazione indicata con "a modulo b" più sotto). Se r = 0 allora si può terminare affermando che b è il MCD cercato, altrimenti occorre assegnare a' = b e b' = r e si ripete nuovamente la divisione. L'algoritmo può essere anche espresso in modo naturale utilizzando la ricorsione in coda. Tenendo nota dei quozienti ottenuti durante lo svolgimento dell'algoritmo, si possono determinare due interi p e q tali che ap + bq = MCD(a, b). Questo è noto con il nome di algoritmo di Euclide esteso. Questi algoritmi possono essere usati, oltre che con i numeri interi, in ogni contesto in cui è possibile eseguire la divisione col resto. Ad esempio, l'algoritmo funziona per i polinomi ad una indeterminata su un campo K, o polinomi omogenei a due indeterminate su un campo, o gli interi gaussiani. Un oggetto algebrico in cui è possibile eseguire la divisione col resto è chiamato anello euclideo. Euclide originariamente formulò il problema geometricamente, per trovare una "misura" comune per la lunghezza di due segmenti, e il suo algoritmo procedeva sottraendo ripetutamente il più corto dal più lungo. Questo procedimento è equivalente alla implementazione seguente, che è molto meno efficiente del metodo indicato sopra: