Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
In fluidodinamica le equazioni di Navier-Stokes sono un sistema di tre equazioni di bilancio (equazioni alle derivate parziali) della meccanica dei continui, che descrivono un fluido viscoso lineare; in esse sono introdotte come leggi costitutive del materiale la legge di Stokes (nel bilancio cinematico) e la legge di Fourier (nel bilancio energetico). Le equazioni devono il loro nome a Claude-Louis Navier e a George Stokes. Queste equazioni corrispondono all'approssimazione di Chapman del primo grado delle equazioni di bilancio. In modo corrispondente, le equazioni di bilancio di Eulero costituiscono la prima e più importante approssimazione (corrispondono all'approssimazione di grado zero dell'espansione), mentre le equazioni di Burnett costituiscono la seconda approssimazione nella espansione asintotica, che tiene conto di effetti del secondo ordine. La soluzione analitica delle equazioni nel caso generale rappresenta uno dei problemi irrisolti della matematica moderna (i cosiddetti 7 problemi per il millennio), per il quale è stato istituito il premio Clay. Soluzioni analitiche particolari si hanno in casi semplificati, mentre soluzioni approssimate si ottengono tipicamente ricorrendo ai metodi propri dell'analisi numerica, e all'uso congiunto del calcolatore.
Le equazioni di Maxwell (così dette poiché elaborate da James Clerk Maxwell) sono un sistema di equazioni differenziali alle derivate parziali lineari accoppiate (due vettoriali e due scalari, per un totale di otto equazioni scalari) che, insieme alla forza di Lorentz, costituiscono le leggi fondamentali che governano l'interazione elettromagnetica.Utilizzate nella fisica classica, esprimono l'evoluzione temporale e i vincoli a cui è soggetto il campo elettromagnetico in relazione alle distribuzioni di carica e corrente elettrica da cui è generato. Raggruppano ed estendono le leggi dell'elettromagnetismo, note fino alla metà del XIX secolo, tra cui la legge di Gauss per il campo elettrico e la legge di Faraday. Tale sintesi fu compiuta da Maxwell che, aggiungendo la corrente di spostamento alla legge di Ampère, rese simmetriche le equazioni che descrivono il campo elettrico e il campo magnetico in modo classico, ovvero non quantistico. Si rende visibile in questo modo come essi siano due manifestazioni di una stessa entità, il campo elettromagnetico. Il settore dell'elettromagnetismo che studia i campi elettromagnetici trascurandone gli aspetti quantistici è l'elettrodinamica classica. Le quattro equazioni mostrano come i campi elettrici dinamici, cioè variabili nel tempo, sono in grado di generare campi magnetici e viceversa, unificando così, a livello teorico e in maniera perfettamente simmetrica, l'elettricità con il magnetismo, già espressa sperimentalmente nella legge di Faraday-Neumann-Lenz. Lo stesso Maxwell osservò che le equazioni ammettono soluzioni ondulatorie, il che condusse alla scoperta delle onde elettromagnetiche e in particolare fu spiegata la natura della luce, fino ad allora oggetto di varie speculazioni teoriche. I campi elettromagnetici, introdotti inizialmente come entità matematica, acquistarono una loro propria realtà fisica potendo esistere indipendentemente dalle sorgenti che li hanno generati.
In analisi matematica un'equazione differenziale è un'equazione che lega una funzione incognita alle sue derivate: se la funzione è di una sola variabile e l'equazione presenta soltanto derivate ordinarie viene detta equazione differenziale ordinaria; se invece la funzione è a più variabili e l'equazione contiene derivate parziali della funzione stessa è detta equazione alle derivate parziali.
Un'equazione (dal latino aequatio) è una uguaglianza matematica tra due espressioni contenenti una o più variabili, dette incognite. L'uso del termine risale almeno al Liber abbaci del Fibonacci (1228). Se un'equazione ha n {\displaystyle n} incognite, allora ogni n {\displaystyle n} -upla (ordinata) di elementi che sostituiti alle corrispondenti incognite rendono vera l'uguaglianza è una soluzione dell'equazione. Risolvere un'equazione significa individuare l'insieme di tutte le sue soluzioni.