Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La trigonometria (dal greco trígonon (τρίγωνον, triangolo) e métron (μέτρον, misura): risoluzione del triangolo) è la parte della matematica che studia i triangoli a partire dai loro angoli. Il compito principale della trigonometria, così come rivela l'etimologia del nome, consiste nel calcolare le misure che caratterizzano gli elementi di un triangolo (lati, angoli, mediane, etc.) partendo da altre misure già note (almeno tre, di cui almeno una lunghezza), per mezzo di speciali funzioni. Tale compito è indicato come risoluzione del triangolo. È anche possibile servirsi di calcoli trigonometrici nella risoluzione di problemi correlati a figure geometriche più complesse, come poligoni o figure geometriche solide, ed in molti altri rami della matematica. Le funzioni trigonometriche (le più importanti delle quali sono il seno e il coseno), introdotte in questo ambito, vengono anche usate in maniera indipendente dalla geometria, comparendo anche in altri campi della matematica e delle sue applicazioni, ad esempio in connessione con la funzione esponenziale o con le operazioni vettoriali.
In matematica, in particolare in trigonometria, la tangente è una funzione trigonometrica definita come la proiezione sull'asse y {\displaystyle y} del punto di incontro tra il prolungamento del secondo lato dell'angolo orientato e la retta che tange la circonferenza goniometrica nel punto ( 1 , 0 ) {\displaystyle (1,0)} ; molto spesso è anche definita come il rapporto tra il seno e il coseno del medesimo angolo. Convenzionalmente tale funzione viene indicata come tan (più raramente tg).
In matematica, la secante di un angolo è una funzione trigonometrica definita come il reciproco del coseno dello stesso angolo, ossia: sec α = 1 cos α . {\displaystyle \sec \alpha ={\frac {1}{\cos \alpha }}.}
In matematica, in particolare in trigonometria, dato un triangolo rettangolo il seno di uno dei due angoli interni adiacenti all'ipotenusa è definito come il rapporto tra le lunghezze del cateto opposto all'angolo e dell'ipotenusa. Più in generale il seno di un angolo α {\displaystyle \alpha } , espresso in gradi o radianti, è una quantità che dipende solo da α {\displaystyle \alpha } , costruita usando la circonferenza unitaria. Definendo come sin ( x ) {\displaystyle \sin(x)} il seno nell'angolo x {\displaystyle x} si ottiene la funzione seno, una funzione trigonometrica di fondamentale importanza nell'analisi matematica. In ambito italiano questa funzione viene spesso indicata con s e n ( x ) {\displaystyle \mathrm {sen} (x)} .
In matematica, la funzione esponenziale è l'elevamento a potenza con base il numero di Eulero e {\displaystyle e} ; la scelta di questo particolare valore è motivata dal fatto che, in questo modo, la derivata della funzione esponenziale è la funzione esponenziale stessa. Viene solitamente rappresentata come e x {\displaystyle e^{x}} , oppure exp ( x ) {\displaystyle \exp(x)} quando è difficile scrivere la variabile come un esponente. Riveste una grande importanza in moltissimi ambiti della matematica, come la trigonometria, lo studio delle equazioni differenziali, la teoria degli sviluppi di Taylor, lo studio delle trasformate integrali. Può essere definita, oltre che sui numeri reali, anche sui numeri complessi o anche su oggetti più complicati, come ad esempio matrici quadrate. È inoltre la funzione inversa della funzione logaritmo.