Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
La geometria descrittiva è la scienza che permette, attraverso determinate costruzioni geometriche, di rappresentare in modo inequivocabile, su uno o più piani, oggetti bidimensionali e tridimensionali. La rappresentazione può essere finalizzata a visualizzare oggetti già esistenti, come nel rilievo (per lo più architettonico), e/o oggetti mentalmente concepiti, come nella progettazione di manufatti tridimensionali.I metodi di rappresentazione (di prospettiva, di assonometria e di Monge) della geometria descrittiva si basano principalmente su due operazioni fondamentali, dette operazioni di proiezione e sezione. Gli assiomi della geometria descrittiva elementare sono sostanzialmente i postulati di Euclide, con l'aggiunta della nozione di ente improprio (punto, retta e piano), secondo una costruzione analoga a quella della geometria proiettiva.
La geometria (dal latino geometrĭa e questo dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni.
In geometria il punto è un concetto primitivo. Intuitivamente equivale ad un'entità adimensionale spaziale, per cui può essere considerato semplicemente come una posizione, cioè come una coordinata. In topologia ed analisi matematica, viene spesso chiamato punto un elemento qualunque di uno spazio topologico e, in particolare, di uno spazio funzionale.
La geometria simplettica è la branca della geometria differenziale e della topologia differenziale che studia le varietà simplettiche, cioè varietà differenziabili equipaggiate con una 2-forma chiusa non degenere. Ha le sue origini nella meccanica hamiltoniana, in cui lo spazio delle fasi di certi sistemi prende la struttura di varietà simplettica. Il termine "simplettica" è stato coniato da Hermann Weyl, traducendolo dal greco συμπλεκτικός, come calco di "complessa", con cui il termine condivide lo stesso suffisso indo-europeo -plek. Il nome è stato scelto anche per sottolineare le profonde connessioni tra strutture simplettiche e strutture complesse.
La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che la descrisse nei suoi Elementi. La sua geometria consiste nell'assunzione di cinque semplici e intuitivi concetti, detti assiomi o postulati e, nella derivazione da detti assiomi, di altre proposizioni (teoremi) che non abbiano alcuna contraddizione con essi. Questa organizzazione della geometria permise l'introduzione della retta, del piano, della lunghezza e dell'area. Sebbene molte delle conclusioni di Euclide fossero già conosciute dai matematici, egli mostrò come queste potessero essere organizzate in una maniera deduttiva e con un sistema logico. Gli Elementi di Euclide incominciano con un'analisi della geometria piana, attualmente insegnata nelle scuole secondarie e utilizzata come primo approccio alle dimostrazioni matematiche, per poi passare alla geometria solida in tre dimensioni. Dopo Euclide sono nati particolari tipi di geometrie che non necessariamente rispettano i cinque postulati; tali geometrie sono definite non euclidee.
Gli Elementi (in greco antico: Στοιχεῖα, Stoichêia) di Euclide (matematico greco attivo intorno al 300 a.C.) sono la più importante opera matematica giuntaci dalla cultura greca antica. Contengono una prima formulazione di quella che oggi è conosciuta con il nome di geometria euclidea, rappresentando un quadro completo e definito dei principi della geometria noti al tempo. Oggi questi principi vengono formulati in modo più generale con i metodi dell'algebra lineare. La formulazione fatta da Euclide viene però ancora insegnata nelle scuole secondarie per fornire un primo esempio di sistema assiomatico e di dimostrazione rigorosa. L'opera consiste di 13 libri: i primi sei riguardanti la geometria piana, i successivi quattro i rapporti tra grandezze (in particolare il decimo libro riguarda la teoria degli incommensurabili) e gli ultimi tre la geometria solida. Alcune edizioni più antiche attribuiscono ad Euclide anche due ulteriori libri che la critica moderna assegna però ad altri autori. I diversi libri sono strutturati in definizioni e proposizioni (enunciati che potremmo anche chiamare teoremi). Delle proposizioni vengono fornite le dimostrazioni.
In geometria, i criteri di congruenza dei triangoli sono un postulato e due teoremi tramite i quali è possibile dimostrare la congruenza fra triangoli, nel caso alcuni loro angoli o lati siano congruenti. I criteri di congruenza sono tre, a cui se ne può aggiungere un quarto che altro non è che una formulazione alternativa del secondo.