Accedi all'area personale per aggiungere e visualizzare i tuoi libri preferiti
L'algebra di Boole (anche detta algebra booleana o reticolo booleano), in matematica e logica matematica, è il ramo dell'algebra in cui le variabili possono assumere solamente i valori vero e falso (valori di verità), generalmente denotati rispettivamente come 1 e 0.
L'ultimo teorema di Fermat, più correttamente definibile come ultima congettura di Fermat, non essendo dimostrata all'epoca, afferma che non esistono soluzioni intere positive all'equazione: a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} se n > 2 {\displaystyle n>2} .
La teoria degli insiemi è una teoria matematica posta ai fondamenti della matematica stessa, collocandosi nell'ambito della logica matematica. Prima della prima metà del XIX secolo la nozione di insieme veniva considerata solo come qualcosa di intuitivo e generico. La nozione è stata sviluppata nella seconda metà del XIX secolo dal matematico tedesco Georg Cantor, è stata al centro dei dibattiti sui fondamenti dal 1890 al 1930 ed ha ricevuto le prime sistemazioni assiomatiche per merito di Ernst Zermelo, Adolf Fraenkel, Paul Bernays, Kurt Gödel, John von Neumann e Thoralf Skolem, Gottlob Frege (le convenzioni linguistico-formali, come il quantificatore universale ed esistenziale) e Giuseppe Peano (notazione e sintassi). In questo periodo si sono assestati due sistemi di assiomi chiamati sistema assiomatico di Zermelo-Fraenkel e sistema assiomatico di Von Neumann-Bernays-Gödel. Successivamente si sono affrontate le tematiche riguardanti il problema della completezza dei sistemi di assiomi (v. teorema di incompletezza di Gödel), i rapporti con la teoria della calcolabilità (vedasi anche macchina di Turing) e la compatibilità dei sistemi di assiomi con l'assioma della scelta e con assiomi equivalenti o simili. Accanto a differenti consolidate teorie formali degli insiemi (vedi anche teoria assiomatica degli insiemi) esistono esposizioni più intuitive che costituiscono la cosiddetta teoria ingenua degli insiemi. Elenchiamo le entità principali della teoria degli insiemi.
La storia della matematica ha origine con il concetto di numero e con le prime scoperte matematiche, proseguendo attraverso l'evoluzione nel corso dei secoli dei propri metodi e delle notazioni matematiche il cui uso si sussegue nel tempo. Un aspetto importante della matematica consiste nel fatto che essa si è sviluppata indipendentemente in culture completamente differenti arrivando in molti casi agli stessi risultati: spesso un contatto o una reciproca influenza tra popoli differenti ha portato all'introduzione di nuove idee e a un avanzamento delle conoscenze matematiche, a volte si è visto invece un regredire improvviso della cultura matematica presso alcuni popoli; la matematica moderna ha invece potuto avvalersi dei contributi di persone di tutti i paesi. L'attività svolta dai matematici moderni è molto diversa da quella dei primi matematici delle civiltà antiche; inizialmente la matematica si basò sul concetto di numero, concetto sviluppatosi nella preistoria. La matematica è stata infatti una tra le prime discipline a svilupparsi: evidenze archeologiche mostrano la conoscenza rudimentale di alcune nozioni matematiche molto prima dell'invenzione della scrittura.
La storia del computer è l'evoluzione dell'apparecchio elettronico destinato all'elaborazione dei dati, privo di capacità decisionale o discrezionale, che compie determinate operazioni secondo procedure prestabilite o programmi.
Un numero complesso è definito come un numero della forma x + y i {\displaystyle x+yi} con x {\displaystyle x} e y {\displaystyle y} numeri reali e i {\displaystyle i} una soluzione dell'equazione x 2 = − 1 {\displaystyle x^{2}=-1} ed è detta unità immaginaria. I numeri complessi sono usati in tutti i campi della matematica, in molti campi della fisica (notoriamente in meccanica quantistica), nonché in ingegneria, specialmente in elettronica/telecomunicazioni o elettrotecnica, per la loro utilità nel rappresentare onde elettromagnetiche e correnti elettriche ad andamento temporale sinusoidale. In matematica i numeri complessi formano un campo (nonché un'algebra reale bidimensionale) e sono generalmente visualizzati come punti di un piano, detto piano complesso. La proprietà più importante dei numeri complessi è basata sul teorema fondamentale dell'algebra, secondo il quale qualunque equazione polinomiale di grado n {\displaystyle n} ha n {\displaystyle n} soluzioni complesse, non necessariamente distinte.
Galileo Galilei (Pisa, 15 febbraio 1564 – Arcetri, 8 gennaio 1642) è stato un fisico, astronomo, filosofo, matematico e accademico italiano, considerato il padre della scienza moderna. Personaggio chiave della rivoluzione scientifica, per aver esplicitamente introdotto il metodo scientifico (detto anche "metodo galileiano" o "metodo sperimentale"), il suo nome è associato a importanti contributi in fisica e in astronomia. Di primaria importanza fu anche il ruolo svolto nella rivoluzione astronomica, con il sostegno al sistema eliocentrico e alla teoria copernicana.I suoi principali contributi al pensiero filosofico derivano dall'introduzione del metodo sperimentale nell'indagine scientifica grazie a cui la scienza abbandonava, per la prima volta, quella posizione metafisica che fino ad allora predominava, per acquisire una nuova, autonoma prospettiva, sia realistica che empiristica, volta a privilegiare, attraverso il metodo sperimentale, più la categoria della quantità (attraverso la determinazione matematica delle leggi della natura) che quella della qualità (frutto della passata tradizione indirizzata solo alla ricerca dell'essenza degli enti) per elaborare ora una descrizione razionale oggettiva della realtà fenomenica.Sospettato di eresia e accusato di voler sovvertire la filosofia naturale aristotelica e le Sacre Scritture, Galilei fu processato e condannato dal Sant'Uffizio, nonché costretto, il 22 giugno 1633, all'abiura delle sue concezioni astronomiche e al confino nella propria villa di Arcetri. Nel corso dei secoli il valore delle opere di Galilei venne gradualmente accettato dalla Chiesa, e 359 anni dopo, il 31 ottobre 1992, papa Giovanni Paolo II, alla sessione plenaria della Pontificia accademia delle scienze, riconobbe "gli errori commessi" sulla base delle conclusioni dei lavori cui pervenne un'apposita commissione di studio da lui istituita nel 1981, riabilitando Galilei.
In matematica, un numero primo (in breve anche primo) è un numero intero positivo che abbia esattamente due divisori distinti. In modo equivalente si può definire come un numero naturale maggiore di 1 che sia divisibile solamente per 1 e per sé stesso; al contrario, un numero maggiore di 1 che abbia più di due divisori è detto composto. Ad esempio 2, 3 e 5 sono primi mentre 4 e 6 non lo sono perché sono divisibili rispettivamente anche per 2 e per 2 e 3. L'unico numero primo pari è 2, in quanto tutti gli altri numeri pari sono divisibili per 2. La successione dei numeri primi comincia con 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37…Quello di numero primo è uno dei concetti basilari della teoria dei numeri, la parte della matematica che studia i numeri interi: l'importanza sta nella possibilità di costruire con essi, attraverso la moltiplicazione, tutti gli altri numeri interi, nonché l'unicità di tale fattorizzazione. I primi sono inoltre infiniti e la loro distribuzione è tuttora oggetto di molte ricerche. I numeri primi sono oggetto di studio fin dall'antichità: i primi risultati risalgono agli antichi Greci, e in particolare agli Elementi di Euclide, scritti attorno al 300 a.C. Ciononostante, numerose congetture che li riguardano non sono state ancora dimostrate; tra le più note vi sono l'ipotesi di Riemann, la congettura di Goldbach e quella dei primi gemelli, indimostrate a più di un secolo dalla loro formulazione. Essi sono rilevanti anche in molti altri ambiti della matematica pura, come ad esempio l'algebra o la geometria; recentemente hanno assunto un'importanza cruciale anche nella matematica applicata, e in particolare nella crittografia.
Pierre de Fermat (Beaumont-de-Lomagne, 17 agosto 1601 – Castres, 12 gennaio 1665) è stato un matematico e magistrato francese. Fu tra i principali matematici della prima metà del XVII secolo e dette importanti contributi allo sviluppo della matematica moderna: con il suo metodo per la individuazione dei massimi e dei minimi delle funzioni precorse gli sviluppi del calcolo differenziale; fece ricerche di grande importanza sulla futura teoria dei numeri, iniziate durante la preparazione di un'edizione della Arithmetica di Diofanto di Alessandria, su cui scrisse note ed osservazioni contenenti numerosi teoremi. Proprio in una di queste osservazioni "a margine" enunciò il cosiddetto ultimo teorema di Fermat (che credeva, molto probabilmente a torto, di aver dimostrato), che è rimasto indimostrato per più di 300 anni, fino al lavoro di Andrew Wiles nel 1994; scoprì, indipendentemente da Cartesio, i principi fondamentali della geometria analitica e, attraverso la corrispondenza con Blaise Pascal, fu uno dei fondatori della teoria della probabilità.
In matematica ed in particolare nell'algebra e nelle sue applicazioni i logaritmi discreti sono il corrispettivo dei logaritmi ordinari per l'aritmetica modulare. Il problema del calcolo dei logaritmi discreti ha notevoli somiglianze con quello della fattorizzazione dei numeri interi, in quanto entrambi i problemi sono supposti difficili (non sono noti algoritmi che li risolvono in tempo polinomiale), algoritmi dell'uno sono spesso adattati all'altro e viceversa, ed entrambi sono stati utilizzati come base teorica per la costruzione di sistemi crittografici. In particolare, il logaritmo discreto trova applicazione nella crittografia basata su curve ellittiche. Tali sistemi crittografici fondano la propria sicurezza sulla supposta difficoltà di tali problemi.
La matematica (dal greco μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere") è la disciplina che studia le quantità (i numeri), lo spazio, le strutture e i calcoli.Per l'origine del termine occorre andare al vocabolo egizio maat, nella cui composizione appare il simbolo del cubito, strumento di misura lineare, un primo accostamento al concetto matematico. Simbolo geometrico di questo ordine è un rettangolo, da cui sorge la testa piumata della dea egizia Maat, personificazione dei concetti di ordine, verità e giustizia. Figlia di Ra, unico Uno, creatore di ogni cosa, la sua potenza demiurgica è limitata e ordinata da leggi naturali e matematiche. All'inizio del papiro di Rhind si trova questa affermazione: "Il calcolo accurato è la porta d'accesso alla conoscenza di tutte le cose e agli oscuri misteri". Il termine maat riappare in copto, in babilonese e in greco. In greco la radice ma, math, met entra nella composizione di vocaboli contenenti le idee di ragione, disciplina, scienza, istruzione, giusta misura, e in latino il termine materia indica ciò che può essere misurato. Col termine matematica di solito si designa la disciplina (e il relativo corpo di conoscenze) che studia problemi concernenti quantità, estensioni e figure spaziali, movimenti di corpi, e tutte le strutture che permettono di trattare questi aspetti in modo generale. La matematica fa largo uso degli strumenti della logica e sviluppa le proprie conoscenze nel quadro di sistemi ipotetico-deduttivi che, a partire da definizioni rigorose e da assiomi riguardanti proprietà degli oggetti definiti (risultati da un procedimento di astrazione, come triangoli, funzioni, vettori ecc.), raggiunge nuove certezze, per mezzo delle dimostrazioni, attorno a proprietà meno intuitive degli oggetti stessi (espresse dai teoremi). La potenza e la generalità dei risultati della matematica le ha reso l'appellativo di regina delle scienze: ogni disciplina scientifica o tecnica, dalla fisica all'ingegneria, dall'economia all'informatica, fa largo uso degli strumenti di analisi, di calcolo e di modellazione offerti dalla matematica.